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FOREWORD

An important aspect of estimating the aerodynamic characteristics of

V/STOL aircraft in transition between hover and wingborne flight is an 1_uder-

standing of the flow field induced by the efflux of the lifting-propulsive

device. The influence of this efflux dominates the aerodynamic interference

effects for aircraft that use high-disk-loading devices such as turbofan or

turbojet lift engines. At the present time, approximately a dozen organiza-

tions are working independently on this problem. Several fundamentally dif-

ferent approaches are being applied toward understanding and solving the

problem. Recognizing this activity, NASA decided to hold a Symposium on the

Analysis of a Jet in a Subsonic Crosswind on September 9 and lO, 1969, at the

Langley Research Center to present the currently available results.

The objective of this meeting was to provide an opportunity for persons

working in the area to present and discuss their work and, in many cases,

their opinions. The presentations were made in two sessions:

Session I - Experimental Results

Session II - Empirical and Analytical Descriptions of the Jet and Induced Flow

This publication includes 15 papers presented at the symposium. The
attendees are listed at the end.

It should be emphasized that this publication essentially represents a

compilation of papers presented by authorities from various governmental and

private organizations. In order to expedite publication, this document has

been printed from copy provided by the authors.

The Langley Research Center wishes to express its appreciation to all

authors and to the organizations they represent, for their substantial con-

tributions to this program and for the timeliness of their responses both to

the program activities and to the symposium.
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JET-WAKE CHARACTERISTICS AND THEIR INDUCED

AERODYNAMIC EFFECTS ON V/STOL AIRCRAFT

IN TRANSITION FLIGHT

By Richard J. Margason

NASA Langley Research Center

and

Richard Fearn

University of Florida

SU_4ARY

A summary indicating the general trends of jet-wake-induced aerodynamic

effects on V/STOL aircraft in transition flight is given. The jet wake

including the adjacent flow field is described qualitatively, and a quantita-

tive measurement of the circulation in the wake is presented. These measure-

ments indicate that the circulation may be somewhat greater than that generated

by potential flow around a circular cylinder. Finally, an extensive list of

related reports has been included.

INTRODUCTION

The purpose of this paper is to summarize results of previous experimental

investigations of the aerodynamic interference effects experienced by V/STOL

aircraft in the transition speed range. (Additional summary papers are pre-

sented in refs. 1 to 6.) These effects have been the subject of a large number

of experimental investigations (refs. 7 to 18). Most of this research effort

has been directed toward the investigation of the forces and moments induced on

the aircraft by the interaction of the vertical jets with the free-stream air.

In addition, a description of the character of the jet wake is presented.

SYMBOLS

A

b

C

D

L

area, ft 2 (m 2)

wing span, ft (m)

wing chord, ft (m)

jet diameter, ft

lift, ib (N)

(m)
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AM

%

qj

T

vj

v /vj

X,Y,Z

x,y,z

7

P

!Pmax

i_o

6f

e

p

increment of lift interference caused by the flow from a jet, ib (N)

increment of pitching-moment interference caused by the flow from a

jet, ft-lb (m-N)

free-stream dynamic pressure, Ib/ft 2 (N/m 2)

jet dynamic pressure, Ib/ft 2 (N/m 2)

thrust, lh (N)

free-stream velocity, fps (mps)

jet velocity, fps (raps)

effective velocity ratio

coordinate axes

Cartesian coordinates, ft (m)

nondimensional circulation strength_ P/2DV

circulation strength, ft2/sec (m2/sec)

maximum circulation strength for potential flow around half of a

circular cylinder, 2DV_, ft2/sec (m2/sec)

total circulation for a wing with an elliptic lift distribution,

4L/pV_b, ft2/sec (m2/sec)

flap deflection, deg

jet deflection from free-stream direction, deg

natural jet coordinate normal to _-q plane, ft (m)

natural jet coordinate in the lateral direction, measured parallel

to Y-axis, ft (m)

angular cylindrical coordinate, rad

natural jet coordinate along the axis of the jet, ft (m)

density, slugs/ft 3 (kg/m3)
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AERODYNAMIC INTERFERENCE EFFECTS

During transition flight of V/STOL aircraft, the jets issuing from the

aircraft are swept rearward by the free-stream flow and are rapidly rolled up

into a pair of vortices (fig. 1). The wakes induce suction pressures on the

fuselage and a distribution of downwash over the aircraft. This downwash is in

effect an induced twist on the wing and tail and an induced camber over the

length of the airplane.

_c,_ra_ trend of oh_ jet-lnauc_a effects is illustrated in I lgure 2.

There is usually a loss in lift which tends to increase with increasing forward

velocity. The loss in lift is about the same with the tail off the aircraft

and with the tail on. There is an increment of pitching moment in transition

flight which tends to increase nose-up with increasing velocity. Because of

the change in downwash in the vicinity of the tail, there is an additional

increment of pitching moment induced when the tail is on.

Recently, an investigation (ref. 18) was undertaken to determine the effect

of the jet-exit location on the interference on a wing. This investigation used

a model with a simple fuselage and an unswept, untapered wing with _u aspect

ratio of 6 and a 30-percent-chord slotted Fowler-type flap. This model was

mounted on a sting-supported strain-gage balance. Two jets, one on each side

of the fuselage, were mounted independently of the wing at about the 25-percent

semispan station. The jet exits were positioned at each of the various longi-

tudinal and vertical locations shown by the plus marks in figure 3. Results of

this investigation show that negative lift interference was experienced when

the jet exits were located ahead of the wing. Favorable interference effects,

however, are encountered with the jets below the wing and aft of the wing mid-

chord. The fact that the interference effects are most favorable for locations

closest to the flap indicates that the jet is probably helping the wing and

flap achieve their full lift potential.

VISUALIZATION OF FLOW PHENOMENA

OF A JET IN A CROSS WIND

The following description of the flow phenomena involved in the transition

problem is based primarily on flow visualization. The shape of the jet wake

when influenced by the free stream is presented in figure 4. These data are

from an experimental investigation (ref. 19) in which the wake exits from the

nozzle at a deflection angle 5j to the free stream. (See refs. 20 to 32 for

other investigations and refs. 33 to 52 for analyses of the jet in a cross

wind.) The free stream deflects the wake back until it tends toward the free-

stream flow. As a result of this investigation, the empirical equation given

in figure 4 was obtained. It describes the path of the jet as a function of

the effective velocity ratio (the square root of the ratio of the free-stream

dynamic pressure to jet dynamic pressure) and the deflection angle of the jet.



A more detailed look at the jet in a cross wind is shownin figure 5 where
the flows induced in and around the jet are shown. This photograph, which was

t

obtained by using water-tunnel flow visualization at the Office National D'Etudes
s

et de Recherches Aerospatlale (O.N.E.R.A.)_ shows a flat plate with a jet

exhausting from it. Near the leading edge of the plate are orifices through

which colored milk is emitted. When the colored filament on the center line

approaches the jet exit, it divides and is swept around the jet. This indi-

cates that there is a stagnation point near the front of the jet. The visible

portion of the jet wake indicates that some of the flow from the free stream

is sucked into the jet. The filament adjacent to the jet passes beside the jet

and is then induced upward into the turbulent wake region behind the jet. Even

the filaments farthest from the center line of the exit are sucked toward the

jet and into the wake region. In the wake region, a considerable amount of

entrainment by the jet can be seen.

In figure 6, two photographs of oil flow on the surface of the plate are

presented. The lower one is a closeup near the jet exit. A line trails diago-

nally downstream from the jet and bounds the wake region. A careful inspection
of the stream lines on the surface shows that the free-stream flow is deflected

around the periphery of the jet and into the wake boundary. In the wake region,

the flow near the jet is entrained forward by the jet. Farther downstream of

the jet exit, the wake flow is deflected away and carried off with the boundary

of the wake on the surface of the plate. This wake boundary appears to be a

second pair of vortices which are similar to a K_rm_n vortex street. This vor-

tex street is probably formed around the potential core of the jet.

The pressure distribution which is induced on the surface of the plate is

presented in figure 7- For these particular data, which are from reference 34,

the effective velocity ratio was 0.25. The region of positive pressure ahead of

the jet indicates a force augmenting the jet thrust. The region of negative

pressure adjacent to and aft of the jet indicates a force opposing the jet thrust

behind the jet. This pressure distribution accounts for the nose-up interference

pitching moment described earlier. The area covered by the negative pressure

is noticeably larger than the area covered by the positive pressure. As a
result there is the lift loss.

Figure 8 is a photograph of the cross section of the jet wake in a water

tunnel. The air bubbles are flowing around the jet wake; the white region is

the jet. The primary features are the swirl of the two elements of vorticity

in this jet cross section and the fact that the cross section is kidney shaped.

STRENGTH OF THE VORTICES IN A JET WAKE

An investigation was conducted recently in the Langley 300-MPH 7- by

lO-foot wind tunnel to determine experimentally the strength of the contra-

rotating vortices in the wake of a jet in a cross flow by use of a vortex meter.

The meter consisted of a i/2-inch-diameter paddle wheel which spins in a rota-
tional flow field.



The first phase of the investigation was calibration of revolutions of the
vortex meter against circulation strength of the flow field. This was accom-
plished by measuring the strength of the trailing vortex sheet from a
rectangular-planform wing with an aspect ratio of 6. (See ref. 18 for a descrip-
tion of the wing.) The vortex meter was placed about i/2 inch aft of the
trailing edge of the wing at several spanwise locations_ and the revolutions
were measured. In addition_ the lift of the wing wasmeasuredwith a six-
componentstrain-gage balance. Then_ this measuredlift and a calculated lift
distribution for the wing were used to determine the magnitude and distribution
of the circulation in the wake of the wing as a function of spanwise location.
The measuredvalues are superimposed on the calculated distribution of vortex
strength in figure 9 where the circulation ratio is presented as a function of
spanwise location. Inboard of the 30 percent location_ the measurementswere
too low to be accurate, and outboard of the 95 percent spanwise location_ the
meter was measuring the change in circulation distribution caused by the rolling
up of the wing-tip vortex. However_the correlation is good for the portion of
the span between these two locations, and the measurementsover this portion
were used to establish the vortex-meter calibration.

Next, the circulation in a jet was measured. For these measurementsa
1-inch-diameter nozzle wasmounted through a ground board normal to the free
stream. The measurementswere madein planes normal to the jet axis as shown
in figure i0. The most complete data were obtained for an effective velocity
ratio of 0.25 at a distance of 6 jet diameters along the jet path.

These results, which are presented in figure Ii, indicate a nondimensional
circulation of approximately 2 for each vortex. The form of the nondimensional
circulation is obtained from analyses of the jet which use the circulation
obtained in potential flow around a circular cylinder (ref. 37). This is done
because the cross-sectional shapes predicted by this model are similar to the
observed shapes. In this model the strength of the vortex sheet describing
the flow around a circle is

r(e) = -2v_ sin e

Integrating this circulation around a semicircle gives the maximum strength of
each vortex as

I/0 _ D deI = 2DV_rma x -- r(e)

The nondimensional circulation is defined as

r

2Dv_

The experimental results indicate that the circulation is approximately twice

the value predicted by the potential-flow model.
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It should be indicated that these results are not precise_ and the pre-

liminary nature of the experiment should be emphasized. There was difficulty

in measuring small amounts of circulation because the meter was calibrated over

a wide range of rpm. Hence_ the sensitivity of the measurement was too coarse

at low rpm. This led to error in determining the total circulation because the

regions of low levels of circulation were large in area_ and as a result_ their

contribution to the total vortex strength was more than expected. Further_

since the vortex meter was rigidly mounted on a wand, there was some difficulty

in alining it to the local flow. It was noted that when the meter was out of

alinement by about i0 ° or greater, it tended to oscillate about an equilibrium

position in the absence of vorticity. This oscillation showed up as revolutions

on the meter. These results describe only a single test condition and will

require additional verification before extrapolating to other conditions.

CONCLUDING REMARKS

The general trends of the effects of lifting jets on the aerodynamics of

V/STOL aircraft in the transition speed range have been indicated. The charac-

ter of the fluid flow in the jet and the adjacent flow field has been described

qualitatively_ and finally_ a quantitative measurement of the circulation in the

wake has been presented. These measurements indicate that the circulation may

be somewhat greater than that generated by potential flow around a circular

cylinder. An extensive list of related reports has been included.
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Figure 1.- Jet wake from a V/STOL aircraft in transition flight rolls up
into a pair of contrarotating vortices.
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Figure 2.- General trend of jet-induced lift loss and pitching moment in

transition flight.
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Figure 6.- Photograph of o i l  flow on the  surface of a p l a t e  which has a 
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THE PHYSICAL NATURE OF THE SUBSONIC

JET IN A CROSS-STREAM

By James F. Keffer,

University of Toronto

SUMMARY

A description of the physical characteristics of the sub-

sonic jet entering a stream with a non-zero, cross-component is

presented. Three zones, in which the dynamics of the flow are

significantly different, are defined. The structure of the
mean and turbulent motion is discussed with reference to the

various entrainment processes.

INTRODUCTION

Probably the first stimulus for an understanding of the

mixing which arises in a jet of fluid discharging into a cross-

flowing stream occurred because of its application to the
emission of effluents from a chimney stack. Only a cursory ob-

servation of a plume is needed to show the remarkably rapid

diffusion which can take place in the natural wind with adiabatic

or nearly adiabatic thermal lapse rates. It is clear from this

that the momentum fluxes of the opposing streams create an ef-
ficient mechanism of entrainment of free-stream fluid. Indeed_

the principle is so basic that it is used to promote fluid

mixing in a large number of mechanical systems.

Lately there has been a resurgence of interest in the de-
tailed features of the fundamental problem. This is partly be-

cause of the increasing awareness of the public and government
about our need to understand the role of turbulent dispersion

of waste effluent. But there has been stimulation, as well,

because of the application to jet thrust systems in some air-

craft. The deflected jetsof a V/STOL plane for example, in-

terfere with the aerodynamic performance. This aspect has re-
ceived some attention recently by Williams and Wood (ref. i)

and Margason (ref. 2). It should perhaps be noted that a much

earlier paper by Ribner (ref. 3) anticipated this interest with
an examination of the effect of a jet upon the stability of a
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jet aircraft.

Considering the basic problem of a jet in a cross-wind,

Ruggeri et al (refs. 4,5,6 and 7), in a series of early papers,

explored the effect of the addition of heat and change of ori-

fice shape upon the flow. The significance of their work to

the present discussion is limited, however, since the wind

tunnel used to contain the cross-stream, was narrow. This es-

sential two-dimensionality would be expected to limit the

lateral spread of the jet and, as will be seen later, the effect

of the flow around the jet edges is important to the entrain-

ment. The first relevant experimental work on the problem was
due to Jordinson (ref. 8), who made some simple measurements

of the trajectory of the round jet. He defined the centreline

as the point of maximum velocity measured with a pitot-tube

and pitch meter at successive vertical stations. As well,

Jordinson surveyed the cross-section of the jet. The result-

ing contours were very revealing in that they showed the edges

of the jet to be sheared by the cross-stream and distorted in

the down-stream direction. The distinctive kidney-shape was

indicative of a secondary mode of entrainment as will be dis-

cussed in some detail in subsequent sections.

A second experimental study by Gordier (ref. 9) carried

out a series of tests over the same general range of velocity

ratios as Jordinson but used a jet discharging into a water

tunnel. The results defining the trajectory were consistent
with previous work and this was the first indication that a

Reynolds number similarity existed. The examination of the

structure of the turbulence within the deflected jet system was

undertaken by Keffer and Baines (ref. i0). Using hot wire

anemometer techniques the mean of the turbulent intensities as

well as the mean velocity quantities were taken. The results

showed that within the range of velocity ratios used by Jordin-

son and Gordier, a self-similarity of the mean flow field could

be defined if one chose to scale the velocity terms by a ref-

erence velocity difference along a natural system of co-ordi-

nates intrinsic to the jet flow (see figure i). The success

of this scaling was only limited for the mean turbulent inten-

sities, however. The rather high level of turbulence intensity

precludes us from considering the data to be more than a quali-

tative specification of magnitude.

The problem has been extended further by a number of in-

vestigators both experimentally and by phenomenological model

equations. No attempt is made here to be comprehensive but a

few examples are mentioned to show the present trend of the
research. Pratte and Baines (ref. ii) examined the far field

behaviour of the jet, that is, the region well beyond the zone
of maximum curvature. Somewhat surprisingly, it appears that

the proper scaling function which one should use to collapse
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the trajectories on a single functional curve depends upon the

velocity ratio rather than the momentum ratio. Fan (ref. 12)

has introduced the effect of a stratified environment upon the

growth and trajectory of what should be termed a plume. Ana-

lytically, he has suggested a mathematical model based upon the

drag of the plume in the cross-stream. Margason (ref. 13), in

a series of wind tunnel tests considered the effects of large

variation of the angle of entry of the jet to the main stream,

as did Platten and Keffer (ref. 14). In the former study em-

pirical fits were made to the trajectories found by a number of

workers with rather uniform results. Platten and Keffer pro-

posed a model equation to account for the two basic modes of

entrainment which exist in the deflected jet. A solution of

the equations gave good fits to the experimental trajectories

over a limited range of injection angles.

As a result of the work briefly outlined above, a distinct

picture of the physical nature of the jet is beginning to emerge.

There are some important areas of disagreement, not, happily,

in the experimental results, but in the mathematical models

which are used to interpret them. Most significant perhaps,

is the controversy about the mechanism of entrainment of ambient

fluid by which the jet grows. This paper will inevitably in-

corporate a personal bias into the argument and tbe emphasis

will be placed upon the structure of the turbulence Within the

flow rather than the phenomenological replacement of the tur-

bulence. It would appear that while the salient features are

reasonably well understood, most of the intimate and therefore

interesting details still command our intensive and enlightened

interpretation.

SYMBOLS

d - orifice diameter

R - velocity ratio

U - axial jet velocity

U
C

- maximum U at any cross-section

Uo

]
- initial jet velocity

U
O

- free stream velocity

U
V

- vortex entrainment velocity

u -- turbulent velocity

x,y,z - Cartesian co-ordinates
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,q,_ - curvilinear co-ordinates

_*,x* - distances measured from virtual source

e -local jet angle

e. - angle of jet injection
3

PHYSICAL DESCRIPTION

In the discussion which follows we reduce the problem to

its simplest form. This becomes an examination of a round jet

of fluid discharging from an infinite plane into an ambient,

miscible fluid of the same density, which has a non-zero, cross-

stream component of velocity. The influence of the surrounding

geometry, such as the presence of a chimney stack or the fuse-

lage of an aircraft, will be ignored. The significant para-

meter will thus be the velocity ratio R defined as the exit

jet velocity Uj divided by the constant and uniform cross-
stream velocity Uo It will further be assumed that the
initial absolute velocity in the jet is large enough that the

developed flow, which takes place upon the mixing of the streams,

will be turbulent. A second parameter is introduced, the angle

of injection ej. Clearly, a complete variation of 8j through
180 ° would include the special cases of a jet in an opposing

stream and the jet in a co-flowing stream. Generally, however,

we shall restrict our interest to moderate deviations of 8j
from the 90 ° direction. A schematic of the jet is shown in

figure i.

It is convenient to think of the jet as arbitrarily sepa-

rated into three regions:
(I) the source flow, where the effect of orifice geometry,

plate and/or tunnel boundary layer and potential core may be

important,

(2) the curvilinear zone, where the jet flow is fully de-

veloped from the standpoint of the turbulence structure and the

entrainment mechanisms proceed in a relatively straightforward
manner and

(3) the far region, where the jet flow, having approached

its asymptotic state, is almost entirely dissipated and, on a

mean flow basis, indistinguishable from the main stream.

The Source Flow

Relatively little work has been done in this region. Es-

sentially the flow at exit bears a close resemblence to the

free jet in that it possesses a core of potential fluid. The

term potential is relative. The fluid emerging from the orifice
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is considered to have a negligible amount of turbulence compared

to that which subsequently develops in the fully mixed region of

the jet. It is probable that the flow in this zone is Reynolds

number dependent, as was found by Baines (ref. 15) for the free

jet, although not enough experimental data are available to make

a definitive statement. It has been shown (refs. i0, ii_ and 14)

that the length of the potential core varies directly with R,

but again the specific functional trend has not been reported

in the literature for a large range of velocity ratios.

Keffer and Baines (ref. I0) indicated that if substitution

is made for the core region and a virtual origin or point source

defined by extrapolating the developed jet flow back through the

plane of emission, the decay of centreline velocity will plot

universally on a single functional plot. This implies a kine-

matic or Reynolds number similarity for all deflected jets, at

least for the range of flows tested. At very low velocity ra-

tios, however, of the order of 4 or less, the flow loses this

characteristic. A premature deflection of the core region by

the pressure field occurs and the trajectory centreline, extra -_

polated back to the virtual origin, does not go through the

physical origin for the flow. For a jet discharging at right

angles to the stream this means that the trajectory at the

source is not tangent to the x-axis. This can lead to diffi-

culties in the mathematical modelling of the flow.

In addition to the displacement or shift effect it was

found that, at these very low velocity ratios, the jet momentum
relative to the free stream is not sufficient to allow the flow

to escape the boundary layer of the exit plane. This introduces

a complication for, unless particular care is taken to eliminate

the boundary layer, the results from different laboratories will

be influenced by the different magnitude of boundary layer en-

trainment. Since this introduces an additional and relatively

uncontrolled parameter into the system and we will not consider
these low values of R further. It will be assumed that the

velocity ratio is sufficiently high that the jet flow can escape

the influence region of the surface. It should perhaps be noted

that a related problem is of some significance. The performance

of the jet when deflected by a gradient wind is certainly rele-

vant. For reasons of simplicity, however, most studies to date

have been concerned with the uniform wind profile.

The previously mentioned experiments of Ruggeri et al con-

sidered the effect of shape change of the discharge opening.

This can be expected to affect the nature of the source flow.

Its significance must be negligibly small in the developed re-

gion of the flow, however, where it is possible to replace the

initial conditions by a virtual origin. For an orifice flow,

a contraction co-efficient is generally necessary to reduce the

data to a convenient base, compatible say with a sharply con-
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verging nozzle. If a length of tube is used to eject the jet

fluid, the exit profile will be markedly non-uniform, the exact

shape depending upon the length of tube or the stage of develop-
ment of the tube flow. It will thus be necessary to define an

appropriate momentum flux for the jet by means of a correction

co-efficient multiplying the square of the average velocity.

The Curvilinear Region

As the jet issues from the exit plane the relative veloci-

ty between the jet and stream fluid creates a turbulent mixing
layer around the periphery. This mixing layer grows in the di-

rection of the jet flow, eroding the potential zone of fluid in
a manner similar to the free jet. In the present case, the

growth is more rapid and the potential core length much shorter.

For velocity ratios of 4, 6 and 8 the core length is of the

order I, 2 and 3 orifice diameters respectively. For the free

jet, the core length is about 6. At the end of the core, the

jet fluid is fully turbulent and the lateral velocity profile,

taken typically in a streamwise traverse, is more or less

Gaussian. We define this as the beginning of the curvilinear

zone and the flow is said to be fully developed at this point.

At present, the behaviour of the flow in the lee of the

jet, conveniently termed the 'wake', is not well understood.

It is possible that the analogy of Jordinson has some validity.

He suggests that the jet can be considered to act as a porous

cylinder with suction, the sink effect being necessary to ac-

count for the entrainment of free-stream fluid. Although of-

fering some convenience this model cannot be expected to tell

us much about the true nature of the entrainment processes.

Clearly the mechanisms must be different in the stagnation re-
gion at the front of the jet and in the 'wake'.

The cross-sectional profiles of Jordinson and Keffer and

Baines (for example see figure 2) have shown the strong lateral

deflection of the jet sides by the shearing of the cross-stream.
Turbulent entrainment of free stream fluid will occur at the

sides because of the relative motion. As it is swept around

into the wake region, the fluid will be incorporated into the

main jet system. The result is a helical circulation pattern.

The generation of the circulation will continue as long as the

jet has a component of velocity normal to the free stream.

Appropriately this helicity has been interpreted as a counter-

rotating, vortex pair and it can be shown from analytical argu-

ments (ref. 14) that the vorticity generation will reach a max-

imum within this curvilinear region. A plot of the rate of

change of circulation velocity is shown in figure 3 as a func-

tion of deflection angle. It might be suspected that the

helicity would play a major role in the entrainment of free-
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stream fluid and the analytical model of Platten and Keffer to-
gether with the experimental results, appears to bear this out.

In the frontal regions of the jet, the flow is partially
stagnated. As the jet deflects, there will be a component of
motion of the free-stream fluid parallel to the mean direction
of the jet flow. This situation is just that required for a
free jet type of entrainment. Although the details of how a
turbulent front expands into a non-turbulent region of fluid
are not at all well understood at present, heuristically we may
argue in terms of a phenomenological model. A requirement for
entrainment is simply the existence of relative motion between
streams of fluid. An instability develops which breaks up into
turbulent mixing and the high velocity fluid, or jet flow, dif-
fuses into or entrains the outer stream. We would thus use,
in lieu of the precise location of the turbulent-non-turbulent
interface, a simple specification of the jet boundary. Con-
veniently this could be the point where the jet velocity excess
has decreased to an arbitrary level, say 10%.

From a physical point of view we thus have two mechanisms
of entrainment, the ordinary free-jet flow type which can be
handled by the conventional phenomenological approach and the
entrainment supplied by the helicity in the 'wake region' of
the jet. Clearly a successful analytical model must in some
way incorporate these two processes.

The developed jet flow in this zone displays some of the
characteristics associated with the simple free-jet. The
measurements of Keffer and Baines of the mean flow distribution
Show a self-similarity of the axial velocity vector when taken
along a curvilinear lateral co-ordinate, N. The scaling was
achieved by using the excess velocity, (U-U o) and dividing by
the local centreline velocity excess, (Uc-Uo). The collapsed
data shown in figure 4, resembles the conventional Gaussian
distribution plot although the scatter is marked. The func-
tional shape is not really surprising. With this technique
of stretching the data small differences tend to be obscured.
Nevertheless, the results show no unexpected anomalies.

The variation of centreline velocity, i.e. along the jet
trajectory, shows a universality which again tends to resemble
the free jet (figure 5). The decay of mean velocity is more
intense, however, as would be expected with the higher rates
of entrainment and the variation of mean velocity at the centre-
line of the jet does not have the simple inverse linear rela-
tionship with distance characteristic of the free jet. It is
significant that when the differences of the source as a func-
tion of velocity ratio are accounted for by allowing the posi-
tion of the virtual origin to vary, the mean flow characteristics
are strongly self-similar for this curvilinear region.
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The turbulence measurements display less self-similarity

when the same method of plotting is used (figure 6). As with
all simple free turbulent shear flows, the structure of the

turbulence requires a longer period than the mean flow to reach

an equilibrium state. In the present situation, the intense

mixing and decay prevents this and an equilibrium situation is

not reached. In fact, since the region is really an interim

state for the whole of the deflected jet flow, it is probably

incorrect to speak in terms of an equilibrium or asymptotic
state for the curvilinear zone.

From the above remarks we can summarize the main features

of the flow in this second region. The curvilinear zone clearly

has most of the characteristics of simple jet flows, for example,
entrainment, axial velocity decay, self-similarity and turbulence

structure. We can choose to interpret the flow as a special case

of the simple jet if an appropriate system of curvilinear co-

ordinates is defined. The most distinguishing feature is the

presence of the 'wake' region and the attendent circulatory flow

which exists within it. Although it is possible to exclude this

'wake' from the basic jet flow analysis, the consequences of the

extra entrainment cannot be ignored.

Far Field Region

Beyond the zone of maximum curvature, entrainment has re-
duced the jet velocity excess to a point where it cannot be

measured by conventional techniques and it becomes necessary to
define the jet boundary for these conditions by the use of a

tracer such as low level heat or smoke. We may think of this as

the onset of the final region of the deflected jet flow. Pratte
and Baines (ref. Ii) were able to observe the far field behaviour

visually and it showed a double-valued power law variation for

the centreline trajectory when scaled in terms of the velocity

ratio. Their functions took the form,

x _ _ n
d---R (d-R)

where the exponent 'n' was 1.0 up to an _/dR of 2 and 0.33 be-

yond that. Their range of velocity ratios extended from 5 to
35. The earlier results of Keffer and Baines, which accounted

for the variation of the virtual origin; suggested the relation

x* _, [([,)] n

dR 2 [ dR2J
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with 'n' = 1.0 in the first portion of the flow but falling off

as the limit of observation (_/dR 2 = 2.0) was reached. These

results are consistent in that they imply that the zone of

curvilinear flow is significantly different than the far field.

Although the axial component of mean velocity is virtually

zero, this region of the flow should still show the effect of

the swirl generated in the curvilinear zone since vorticity is

remarkably long-lived. The jet in this final phase contains its

original vertical momentum. It will therefore continue to rise,

but at an ever-decreasing rate as the momentum is diffused over

the steadily increasing area of each horizontal plane. Because

of this, additional vorticity will continue to be generated all

along the trajectory of the jet. But the rate of generation

will decrease as we travel further along the jet path and the

processes of ordinary viscous dissipation will cause the abso-

lute magnitude of the vorticity to decrease. The limit state

of this flow will thus be a pair of weak, counter-rotating line

vortices, being carried along by the main stream.

The structure of the turbulence in this final phase must

also be dominated by the viscous decay. The smaller eddies will

be dissipated most rapidly and as is found with grid-produced

turbulence, the largest eddies_ which are characteristic of the

generating grid_ remain. They tend to retain their identity

while the smaller scales disappear. In a sense the counter-

rotating vortex pair in this present system is analogous to the

large eddy of the grid flow. It is probably more accurate to

view these vortices, at least in the final phase, as general

patterns of circulation rather than discrete and perhaps
measureable line vortices.

The entrainment mechanism in this final phase must depend

almost entirely upon the vortex flow since there no longer is

an effective component of relative axial motion between the

jet and the free stream. We would expect, therefore that the

absolute entrainment would decrease and the rate of jet spread

would fall off. The measurements of Pratte and Baines support

this. A plot of the width of the jet with respect to the axial

path gives

C )n
dR

where 'n' is 1.35 in the curvilinear region.

ruptly to 0.33 for the far field.

This changes ab-
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DISCUSSION

For meteorological applications, the far field region

would be of most importance. Interest for aerodynamic study,

however, would centre upon the first two regions of the flow.
Within the zone of maximum curvature, where the flow has reached

a developed state of turbulence and where the dynamic effects

are strong, attempts have been made to formulate model equations
for the flow. For example, in the work of Fan (ref. 12), the

presence of entrainment, additional to that supplied by free
jet theory, is attributed to a pressure difference around the

jet flow. By employing a suitable drag co-efficient, Fan's

model appears to predict the trajectories of both buoyant and

non-buoyant plumes reasonably well. On physical grounds, how-

ever, this concept is not attractive, since in regions away
from the source, the processes involved in jet entrainment are

most likely to result from free stream effects not depending
upon pressure gradients.

In contrast, Platten and Keffer (ref. 14) have suggested
that the extra entrainment must result from the observed circu-

latory flow, i.e. the so-called vortex pair. As discussed above,

it may be more reasonable to think of these motions as large

turbulent eddies within the jet system, rather than a pair of
strong line vortices such as would be observed from a delta

wing. This would not affect the analysis, however. The work

of Pratte and Keffer (ref. 16) on turbulent swirling jets has
verified that a marked increase in entrainment results when

swirl is added to a simple jet flow, the spread rate increasing

by a factor of two for a swirl velocity of the same order

initially as the axial velocity. Although it is not yet clear

whether the free jet and vortex contributions to entrainment

are interactive, the simple additive model of Platten and

Keffer, predicts the experimental results well.

Aside from obvious practical applications, the study of
the deflected jet is of considerable fundamental interest in

that it represents a particular example of a free turbulent

shear flow. As an exercise in basic research, the problem may

be expected to tell us something about the structure of turbu-

lence generally. Although the simplest of free turbulent shear

flows (jets and mixing layers) are self-preserving, (ref. 17)
enabling spread and decay rates to be predicted from the equations

of motion, the present flow is not. The presence of the co-

flowing component of the external stream precludes this particu-
lar analysis even when use is made of the intrinsic co-ordinate

system. As mentioned above, however, the results show the flow

to be roughly self-similar in the zone of curvature. This does

enable some simplification to be made in the analysis of the

problem. Much more experimental work is required in this region
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to establish the more subtle characteristics of the turbulence,
however.

REFERENCES

I. Williams, J. and Wood, M.N.: Aerodynamic Interference Ef-
fects with Jet-Lift V/STOL Aircraft under Static and For-

ward-Speed Conditions. Tech. Rep. No. 66403, Brit. R.A.E.,
Dec. 1966.

2. Margason, R.J.: Jet-Included Effects in Transition Flight.

Conference on V/STOL and STOL Aircraft, NASA SP-II6, 1966,

pp. 177-189.

3. Ribner, H.S.: Field of Flow About a Jet and Effects of Jets

on Stability of Jet-Propelled Airplanes. NACA War. Rep.

L 213, 1946.

4. Callaghan, E.E. and Ruggeri, R.S.: Investigation of the

Penetration of an Air Jet Directed Perpendicularly to an

Air Stream. NACA TN 1615, June 1948.

5. Ruggeri, R.S., Callaghan, E.E. and Bowden, D.T.: Penetra-

tion of Air Jets Issuing from Circular, Square and Ellipti-

cal Orifices Directed Perpendicularly to an Air Stream.

NACA TN 2019, Feb. 1950.

6. Callaghan, E.E. and Ruggeri, R.S.: A General Correlation of
Temperature Profiles of a Heated Air Jet Directed Perpendi-

cularly to an Air Stream. NACA TN 2466, Sept. 1951.

7. Ruggeri, R.S.: General Correlation of Temperature Profiles
Downstream of a Heated Air Jet Directed at Various Angles

to the Air Stream. NACA TN 2855, Dec. 1952.

8. Jordinson, R.: Flow in a Jet Directed Normal to the Wind.

R. and M. No. 3074, Aero. Res. Comm. (Great Britain),

Oct. 1956.

9. Gordier, R.L.: Studies on Fluid Jets Discharging Normally

into Moving Liquid. St. Anthony Falls Hyd. Lab., Tech.

Paper, No. 28, Series B, Aug. 1959.

i0. Keffer, J.F. and Baines, W.D.: The Round Turbulent Jet in
a Cross-Wind. J. Fluid Mech., Vol. 15, Pt. 4, 1963, pp.

481-496.

29



ii. Pratte, B.D. and Baines, W.D.:
bulent Jet in a Cross Flow.

Nov. 1967, pp. 53-64.

Profiles of the Round Tur-

J. Hyd. Div., Proc. A.S.C.E.,

12. Fan, L.N.: Turbulent Buoyant Jets into Stratified or Flow-

ing Ambient Fluids. Rep. No. KH-R-15, Keck Hyd. Lab.,

California Inst. Technology, June 1967.

13. Margason, R.J.: The Path of a Jet Directed at Large Angles
to a Subsonic Free Stream. NASA TN D-4919.

14. Platten, J.L. and Keffer, J.F.: Entrainment in Deflected

Axisymmetric Jets at Various Angles to the Stream. Univ.

of Toronto, Mech. Eng. TP-6808, June 1968.

15. Baines, W.D.: Discussion of 'Diffusion of Submerged Jets'.

Trans. A.S.C.E., Vol. 115, 1950.

16. Pratte, B.D. and Keffer, J.F.: Swirling Turbulent Jet Flows.

Part I: The Single Swirling Jet. Univ. of Toronto, Mech.

Eng._ TP-6901, March 1969.

17. Townsend, A.A.: The Structure of Turbulent Shear Flow.

Cambridge University Press, 1956.

30



¥ Z

Figure I.- Intrinsic co-ordinate system for the deflected jet.
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THE AERODYNAMICS OF THE LIFTING JET IN A CROSS FLOWING STREAM

By J. E. Hackett and H. R. Miller

Lockheed-Georgia Aerospace Research Laboratory

For many methods of treating the problem of the lifting jet in a cross

flowing stream theoretically, it is necessary to know_ in advance, the mean path

of the jet, which is usually determined experimentally. For the general design

prCoiem, and particularly where novel configurations are being investigated,

this can prove awkward. The long-termaim of the work currently in progress at

the Lockheed-Georgia Research Laboratory is therefore to predict the path of the

lifting jet plume or plumes with sufficient details of the flow structure to

allow pressures to be calculated on nearby surfaces.

Like many other investigators in this area_ we started our theoretical

approach by repeating H. C. Chang's (nEe Lu,-ref. i) calculation of the self-

induced distortion of a two-dimensional circular cylinder immersed in a main-

stream_ w_th the aim of extending the work into a genuine three-d_mensiona!

approachj rather than using her time analogue for Jet direction. Before

launching into a three-dimensional perturbation study, however, we felt a need

to understand more about the validity of any potential-flow type of approach

and also more about the topology of this particular example of vortex roll-up.

In 1961 experiments were conducted on a wind-tunnel model of a lifting-fan

nacelle which generated a 6.4-inch-diameter jet at 200 ft/sec. (See ref. 2.)

In part of that study, smoke was introduced upstream of the intake to form a

round jet emerging below the model. The familiar vortex roll-up could be seen

using the light screen technique and a flow structure was deduced which has

been confirmed more recently at a very much lower Reynolds number. The mean

flow seen then strongly resembles the much smaller scale laminar flow shown in

figure I. There is therefore some expectation that viscous effects will be

superposable.

Figure 2 picks out certain streamlines inside the jet and shows how Jet

fluid becomes part of the trailing vortex. It was pointed out to us by

Dr. Kroeger of AR0 Inc., that the jet (almost) splits into two parts down its

fore and aft centerline to form one spiral of each trailing vortex. We also

see in figure 2 that the trailing vortices contain adjacent spirals of jet and

mainstream fluid. This is further illustrated in figures 3 and 4. Smoke spirals

of jet fluid in figure I and of mainstream air in figure 4 illustrate that_ even

for these essentially laminar flows_ mixing is quite efficient. The jet in fig-

ure 4 is emitted from a representative aircraft model; very similar effects were

seen using small tubes as for figure i.

It is fortunate that the experimentally-found variation of lift interfer-

ence force with radius has a maximum value some distance from the cylinder sur-

face. This gives some hope that a meaningful finite vortex representation can

be accomplished without the need for an excessive number of vortex elements.

Nevertheless_ we have felt it desirable to study local effects near vortices.
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In figure 5(a), we see a streamline path for a circle represented by 48 vor-

tices. Small perturbations, not visible at the scale of the figure, are encoun-

tered as vortices are passed. If constant length steps are used for tracking,

the process is quite stable. It is interesting to note that_ on starting a

streamline inside the circle, we find the fluid there is virtually at rest

(just as Prandtl said it would be). There is slight drift, however, due to the

fact that the number of vortices is finite, and this allows the streamline to

penetrate the cylinder surface from inside and join the stable "pseudo boundary

layer" on the outside.

Figure 5(b) illustrates how the pressure coefficient Cp varies along the

streamline shown in figure 5(a). The waves in the potential flow curve are due

to the waviness of the streamline as it passes individual vortices. In fig-

ure 6 more local errors in the pressure coefficient are examined. It seems

that a band of about l_pitches thick should be avoided.
2

We have also looked at local kinematic effects to answer the question "what

happens to the joining line between vortices?" Figure 7 identifies the area

we have studied in this regard, which is shown at enlarged scale in figure 8.

Clearly the thickness of the convoluted layer will decrease as the mesh size

decreases. One is also tempted to speculate that some sort of mixing process

is being implied which may be capable of later reinterpretation in viscous

terms. Even for a two-dimensional model_ these convolutions become very com-

plex; in three dimensions they will be almost unimaginable.

Much of the work just described was carried out more than a year ago. In

the interim, we have studied vortex roll-up behind heavily loaded wings, using

similar techniques (see ref. 3). Recently we have resumed work on jet plumes;

a three-dimensional perturbation scheme is being programed in which elements

with circulation components in the vortex ring direction are used in addition

to the vertical ones of the two-dimensions-plus-time method. We anticipate

considerable difficulties in monitoring and understanding the progress of tran-

sient three-dimensional geometries and have prepared for this by getting

involved with computer graphics. We are indebted to Dave Smith of our Systems

Sciences Laboratory, who has been instrumental in the development of our com-

puter graphics capabilities. Figure 9 shows the familiar H. C. Chang type of

calculation, using 48 points. In practice_ motion is added and the viewpoint

may be changed almost arbitarily. We believe this will be invaluable when

interpreting three-dimensional perturbation studies.
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Figure 1.- A low Reynolds number smoke j e t .  



Figure 2.- Formation of trailing vortices showing distortion of jet fluid.
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Figure 3.- Formation of trailing vortices showing entrainment of mainstream

fluid into trailing vortices.
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Figure 4.- Smoke visualization of entrainment of main- 
stream fluid into trailing vortices. 
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Figure 9.- Computer-graphic display of the results of an

H. C. Chang type of calculation.
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EXPERIMENTAL INVESTIGATION OF

PRESSURES INDUCED ON A FLAT PLATE

BY A JET ISSUING INTO A SUBSONIC CROSSWIND

By Howard M. McMahon and David K. Mosher

Georgia Institute of Technology

SUMMARY

Measurements of static pressure distributions on a flat plate are pre-

sented for circular and non-circular jets issuing normal to the plate surface

at various jet exit velocities. Certain trends concerning the pressure

distribution patterns were noted. It was observed that the pattern for a given

exit shape and jet velocity is similar to that for a smaller length-to-width

ratio exit shape at a higher jet velocity. A check was made to see if this

could be related to the jet pltnne path. The results indicate that the pressure l

distribution on the plate depends upon the character of the jet a_ well as

upon the path of the jet plume relative to the plate.

INTRODUCTION

Increasing interest in V/STOL aircraft during recent years has been

reflected in the reporting of a number of experiments concerned with the

interaction of a turbulent jet and a subsonic deflecting stream. The inter-

action of the exhaust from a lift-fan or a lift-jet with the air flowing over

an aircraft in forward motion can cause large lift losses and moment changes

during the critical transition phase from vertical to conventional horizontal

flight.

Experimental results can be grouped into four categories:

l) Gross lift and moment measurements on aircraft configurations

with various jet exit geometries and locations. (See, for

exemple_ refs. 1 and 2.)

2) Penetration of the jet into the deflecting stream. (See, for

exsmple, refs. 3 and 4.)

3) Measurements of the flow field in and around the jet plume.

(See, for example_ refs. 5 and 6.)

4) Pressure distribution measurements on the surface from which the

jet is issuing. (See, for example, refs. 7 and 8.)

* This work is supported by the U. S. Army Research Office-Durham- under
contract No. DAHC04 68 C0004.
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An experimental program is underway at Georgia Tech covering areas 2, 3

and 4. Some results have been reported in reference 9. Further surface-

pressure distribution results are presented here.

The interaction between the jet and the deflecting stream is characterized

by a combination of phenomena - the jet displaces the deflecting stream

("blockage"), captures some of the deflecting-stream fluid ("entrainment"),

and causes a low-energy region to form downstream of the jet plume ("wake").

Three different jet exit configurations were used in the present study with

the aim of achieving large changes in these interaction phenomena_ thus leading

to a better insight into the interference problem. Previously reported data

on other than circular jets have been confined to penetration or gross lift

and moment results. The only exception known to the authors is reference i0,

where pressure distributions on the underside of a wing containing a rectangular

jet orifice were reported. However, true flat plate conditions were not

present in this test and no measurements were made away from the surface. Thus,

a comprehensive study of different exit configurations was felt to be in order.

SYMBOLS

a

V°

J

V
co

X

Pj

Pco

radius of the circular jet orifice

IDLm
ratio of jet exit momentum flux to free-stream momentum fluX, jp_V2wco

jet exit velocity

free-stream velocity

coordinate in the free-stream direction

coordinate normal to the plate

jet exit density

free-stream density

EQUIPMENT AND PROCEDURES

Experiments were conducted in the Georgia Tech 9-foot subsonic wind

tunnel. Figure i is a view of the test section looking upstream and shows

the plate mounted 12 inches above the bottom of the tunnel on thin support

struts. The nozzle supply pipe and all of the pressure leads were enclosed

in a streamlined fairing located under the center of the plate.

Figure 2 shows the details of the plate construction. The plate is

3/8-inch-thick aluminum, 48 inches in chord and 66 inches in span, with a

rounded leading edge. A disc, 32 inches outside diameter and 7 inches inside
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diameter_ contains twelve O.040-inch-diameter pressure taps along a radius.
This disc can be rotated remotely to obtain a complete picture of the pressure
distribution. Inside the disc and bolted to the top of the nozzle supply pipe
is a replaceable nozzle block. Twonozzle geometries having the sameexit
area were used. The nozzle block containing the 2-inch-diameter circular
nozzle is showninstalled in the plate. The exit geometry of the second nozzle
(exhibited on the plate surface in figure 2) was a slot 1.0 inches by 2.36
inches, rounded by a semi-circle of 0.5 inch radius at either end. As shownin
figure 3, when the longer dimension of this jet exit was aligned perpendicular
to the free-stream flow direction the exit configuration is termed 'blunt".
W-menthe nozzle block was rotated ninety degrees such that the longer dimension
was parallel to the free-stream direction the configuration is termed "stream-
wise". Surface pressures near the jet exit were measuredby pressure taps in
the top of the nozzle block• The componentsmaking up the plate surface were
assembled and aligned within + 0.010 inches. The velocity profile of the

boundary layer on the plate was measured on the centerline 15 inches from the

leading edge with the jet off and was found to follow the i/7 (turbulent) power
law, with a boundary layer thickness of about i inch.

Air _ the jet was supplied by a !O0 H.P __7

a 6-inch line. The jet exit velocity was set using the total pressure as

measured in the supply pipe just before the jet nozzle contraction, assuming

the static pressure at the jet exit to be free-stream static and the nozzle

discharge coefficient to be 100%. The uniformity of the jet exit flow was

checked by making total and static pressure surveys in the jet exit plane with

the tunnel off. Results showed a velocity variation of less than 2% over the

exit cross sections• Further details of the test equipment are given in
reference 9.

Oil-film flow visualization was done by covering the plate with white

contact paper and applying a mixture of lamp-black_ oleic acid, and diesel oil.

When a pattern of the oil film became established, the jet and tunnel flows

were stopped and the result photographed. The main features of the oil pattern

were found to be repeatable but the intensity of some of the features was found

to depend on oil mixture and the time allowed for development of the pattern.

All pressures were measured with a variable-capacitance electric manometer

calibrated against an alcohol micro-manometer. In general, the plate pressure

measurements were accurate to within ± i% of the free-stream dynamic pressure

and were repeatable within + i%. In regions very near the jet and also in the

near wake behind the jet the pressure readings were fluctuating• The time-

averaged readings were recorded and were repeatable to within ± 5% of the free-
stream dynamic pressure.

Previous investigators (ref. 7) have shown that for a circular jet the

primary parameter in the interference problem is the ratio of jet exit momentum

flux to the undisturbed free-stream momentum flux, 2 = r_. In order to

establish the Reynolds number dependence for the blunt jet, plate pressures
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for this jet were comparedat V = 25 and 50 feet per second while holding
r_ = 8. The differences were not significant. All data reported here are for
a free-stream velocity of 50 feet per second.

RESULTSANDDISCUSSION

Two sets of oil-filmphotographs were taken, one for the jet in the
crosswind and the other for a long solid body of the sameshape as the jet
exit placed normal to the plate and replacing the jet. The two sets of
photographs are comparedto one another in figures 4, 5, and 6. The free-
stream velocity in all cases is directed from the top to the bottom of the
photographs. The oil pattern associated with the jet indicates strong entrain-
ment of deflecting-stream air into the jet and also into the wake region behind
the jet. Similar results were observed at • = 4 and • = 12, with the wake
becoming broader in all cases as • was increased. The oil flow pattern is, of
course, not necessarily indicative of the flow field off the plate because of
the presence of the plate boundary layer.

Figures 7 and 8 show static pressure distributions on the plate surface at
= 8 plotted in coefficient form. The static pressure coefficients were

obtained by measuring the difference in static pressure at a point on the plate
with and without jet flow and dividing the difference by the free-stream
dynamic pressure. The static pressure coefficient with the jet off was very
uniform over the entire plate, the measuredvalues deviating from the average
value of 0.01 by less than O.O03. Only the pressure distribution over half
the plate is presented in the figures and is plotted so as to contrast the
results from the streamwise and blunt configurations with those obtained for
the more familiar circular jet. The pressure distribution for se-eral cases
was checked across the span of the plate and the symmetry of the flow with
respect to the centerline was found to be excellent.

Figures 7 and 8 show that there is a rearward shift of the low-pressure
region as the jet exit becomesmore blunt. Similar trends were noted at

= 4 and _ = 12 and the corresponding pressure distributions are shown in
reference 9- Additional measurementsof plate static pressure have also been
madeat • = I0 for all three jet configurations and at • = 20 for the blunt jet
configuration.

Whenall of the pressure distribution data were assembled in an array of
contour plots with rows of the array representing increasing • and columns
representing increasing jet bluntness, a roughly "diagonal" trend was noted in
the shape of the pressure contour patterns. That is; the shape of the pressure
contours for the streamwise jet at • = 8 is similar to that for the circular
jet at m = 12 and also similar to that for the blunt jet at • = 20. A com-
parison is madein figure 9 to illustrate this trend. It should be noted that
the observed "diagonal" trend represents a correspondence more in pressure
contour pattern than in pressure magnitude.
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Some investigators have suggested that the primary factor determining the

magnitude and distribution of the surface pressures resulting from the inter-

ference of a jet with a deflecting stream is the rolling up of the wake into a

vortex pair downstream of the jet exit. This in turn suggests that the

position of the vorticity is important in evaluating the interference effect,

that is, the proximity of the jet plume path to the plate surface may be a

major factor in the interference as displayed by the surface pressures. One

possible explanation, then, of the "diagonal" trend noted above is that the

similar pressure contour patterns for the various jets are a result of similar

jet plume paths, since it is known (ref. 4) that jets of different initial

shapes penetrate different distances into the deflecting stream. Measurements

were made of jet plume centerline paths, here defined as the locus of points of

maximum total pressure as measured in the jet plume in the vertical plane of
symmetry. The results are shown in figure 10. It is seen that there is no

correlation between the similar pressure patterns in figure 9 and the corre-

sponding jet plume paths. To verify this, the jet plume path prediction of

reference ll was used to select a value of _ for the circular jet which would

give approximately the same plume path as that for the blunt jet at • = 8.

The required value was _ = 6.8. The two plume paths are shown in figure lO
and the plate pressure distributions are compared in figure ll. T_ne result
confirms that the proximity of the jet plume is not in itself a measure of the

interference pressure distribution on the plate surface. Thus, the combination

of blockage, entrainment, and wake effects which, in some proportion, specifies

the character of a given jet plays a major role in the interference problem in
addition to the role played by the path of the jet plume relative to the surface.

The character of the jet cannot be well defined nor understood from surface

measurements alone. Considerable experimental data giving the flow field

details off the plate are required before a better understanding will be
achieved.

CONCLUDING REMARKS

Oil flow traces and pressure distributions on the plate surface indicate

large changes in the interference between the jet and the deflecting stream

when the jet exit configuration is varied. These changes are indicative of a

complex interplay between blockage, entrainment, and wake phenomena which is
not as yet well understood. Detailed measurements of the flow field off the

surface are needed to aid in the understanding. A certain similarity between
plate pressure contours for the different jets was noted which cannot be

attributed solely to the proximity of the jet plume to the plate surface but

which must also depend upon the character of the jet. It would appear that a

mathematical model must incorporate the features of blockage, entrainment, and

wake if it is to describe successfully the jet interference problem for various
jet exit configurations.
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EXPERIMENTAL REACTION JET EFFECTS AT

SUBSONIC SPEEDS

By Troy A. Street and Donald J. Spring

Advanced Systems Laboratory
of the U. S. Army Missile Command

SUMMARY

A brief description of the total overall reaction jet program

of the Advanced Systems Laboratory is given as well as a brief

review of the work _one tO date. A more thorough presentation of

the subsonic experimental data is made.

INTRODUCTION

The purpose of this paper is to give a very brief synopsis of

the trends in the aerodynamic data that the U.S. Army Missile

Command has accumulated experimentally in the subsonic regime.

Predominately, the data collected to date in the subsonic regime

has been for the sonic jet with underexpanded flow injecting into

a subsonic freestream. The data presented herein is a collection

from a test of an axisymmetric body of revolution with a sonic jet

injecting into a freestream Mach number of 0.285 and a sonic jet

injecting from a flat plate into freestream Mach numbers of 0.i,

0.2, 0.4, and 0.6.

SYMBOLS

b fin span or slot width, inches

fin chord, inches

CN normal force coefficient

Cp pressure coefficient

D body diameter, inches

d jet diameter, inches
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e

Fni

FT

K

M

_n

N

P

Pc

Q

R

V

Ol

A

e

Subscripts:

J

cO

base of natural logarithm

normal interference force, lbs

force due to thrust of the jet, lbs

empirical constant

freestream Mach number

mass rate of flow, lb/sec

empirical constant

freestream static pressure, psia

total pressure in the jet chamber, psia

jet-to-freestream momentum ratio

radius, inches

velocity, ft/sec

angle of attack, degrees.

increment

slot length, inches

angle from upstream freestream, degrees

jet

freestream

HISTORICAL BACKGROUND

The U.S. Army Missile Command is currently endeavoring to

develop those techniques required to predict the aerodynamic

coefficients necessary for design of reaction jets as control de-

vices. This stimulates research activities in the dual areas of

bringing to bear those techniques from other disciplines as well

as advancing the state-of-art in the solution of fluid mechanics

problems.

The current research program of the Advanced Systems Laboratory

64



of the U.S. Army Missile Command fundamentally draws upon past

and present analytical and experimental efforts to obtain design

parameters and prepares for the future to utilize the forthcoming

generation of computers. Throughout the program the range of

interest addresses itself to the ultimate objective of developing

the capability to predict the aerodynamic characteristics of axi-

symmetric bodies of revolution using multiple reaction jets any-

where on the body with any jet orientation, jet condition or in-

jectant, and a wide speed range from low subsonic deep into hyper-

sonic. Of course, the ultL_te objective is so broad that only

small segments are being examined in logical sequence.

The current approaches are as follows:

A. Theoretical Approach

B. Analytical or Semi-Empirical Approach

C. Empirical Correlation Approach

D. Experimental Approach

The first three approaches will be very briefly described with the

Experimental Approach in the subsonic regime receiving the majority

of attention for the interest of this symposium, although con-

siderably more experimental data has been collected in the super-

sonic regime by the Advanced Systems Laboratory than has been

accumulated An the subsonic regime. This is not to de-emphasize

the Army's interest An the subsonic regime but merely to state

that the Army, historically, has had more pressing needs in the

transonic and supersonic regimes.

APPROACHES

(a) Theoretical Approach

In this effort a numerical solution to the Navier Stokes equa-

tions is being sought for a slot ejecting normally into a super-

sonic approach flow. Finite difference approximations are used to

replace the derivatives in the unsteady Navler Stokes equations.

An initial flow field ks assumed and the flow allowed to develop

with time. The steady state solution is desired and results as the

limit of the unsteady solution. At present the method is progress-
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ing normally but steady state has not been reached. An inherent

drawback in the technique has limited the present effort to ex-

tremely low Reynolds number and to laminar flow. Future efforts

will strive to overcome these drawbacks.

(b) Analytical or Semi-Empirical Approach

The supersonic analytical approach, as reported previously in

the literature I is based upon the "equivalent body analogy" con-

cept. This concept is for a sonic, normal, underexpanded jet. The

jet is assumed to be replaceable by an equivalent solid body that

will produce a similar effect on the body of revolution. The equiva-

lent body is determined by relating the change in the longitudinal

component of momentum of the jet to the drag of an equivalent body.

The equivalent body is assumed to be a sphere-cylinder body with

the origin of the sphere placed on the jet centerline at the sphere

radius above the jet exit as shown in Figure i. The method of

characteristics is then run for the equivalent body. The inter-

section of the characteristics ne_ with the missile body provides

a surface for the integration of pressure to determine the inter-

ference forces and moments. A comparison of the data obtained by

this technique with the experimental data for the incremental

normal force coefficient variation with Mach number for various

pressure ratios is shown in Figure 2. The trends obtained by this

equivalent body analogy are correct while the magnitude appears to

be in error from ii to 16%.

The subsonic analytical approach is described in another paper at this
symposium by Robert Rosen, Norbert A. Durando, and Louis A. Cassel of the
McDonnell Douglas Corporation, which is under contract to the Advanced
Systems Laboratory to develop this subsonic approach.

(c) Empirical Correlation Approach

The empirical correlation approach used the force data obtain-

ed during the experimental tests for Mach numbers 0.8 to 4.5 for

various pressure ratios and axial jet locations on a body of re-

volution.

The augmentation ratio, Kn, was selected as a pertinent para-

meter to measure the control force. The augmentation ratio is

defined as

Kn = 1 + Fni/FT
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where Fni is the normal interference force and F T is the jet thrust.

The procedure for developing the empirical technique was to

plot the augmentation ratio, K n, as a function of jet momentum-to-

freestream momentum, Q . The curves were linearized by multiply-

ing the augmentation ratio by the momentum ratio. The results were

then curve fit. The curves were then rotated to a common slope and

shifted to a common origin.

Two empirical constants, K and N, are required at this point.

K is the empirical constant required to rotate the curves and N is

the empirical constant required to translate the curves to a common

origin. These two empirical constants are functions only of the

type of jet, slot or circular, and the body axial location. Figure

3 shows the calculated values of the empirical technique compared

with the corresponding experimental data to be within an accuracy

of + i_.

(d) Experimental Approaches

The models used for the experimental reaction jet programs

consisted of a 4-caliber tangent ogive nose with a cylindrical

afterbody, Figures 4 and 15, for tests at Mach numbers of 4.5 to

0.8 and 0.285 and a flat plate at Mach numbers of 0.6,0.4,0.2,and

0.i. Force and moment tests were conducted for the Mach number

range 4.5 to 0.8 and a flow field survey conducted for the Mach

number range 1.2 to 0.9; the flat plate was used in a pressure test.

The force and moment tests were for angle of attack of _ 4 °

using the model shown in Figure 4. Either air or nitrogen was used

as the secondary gas and was injected normal to the surface at a

sonic exit Mach number. Artificial boundary layer trips were in-

cluded in all tests to assure a turbulent boundary layer.

Figure 5 shows a typical variation of the normal force coef-

ficient with angle of attack for various jet total-to-freestream

static pressure ratios as a variable. Two features should be noted

concerning these figures:

(1) Over the angle of attack range _ 4 degrees_ these

data vary linearly with no discontinuities.

(2) These data at the zero angle-of-attack intercepts

represent the augmentation or degradation of the

control force.

These data are in the transonic region where information is sorely
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needed.

Another significant program investigated the jet on stabiliz-

ing surfaces located aft of the control jets 2, with the testing

performed at Mach numbers of 0.9 and 1.2 for several jet pressure

ratios. An example of the changes due to jet momentum ratio is shown

in Fig. 6. A small (¼-inch dia.) flow probe and pitot-static tube

was used to map the flow fields in the immediate vicinity of the

fin, and the resulting data were reduced in terms of velocity com-

ponents in the X,Y,Z plane. Figure 7 shows a representative sur-

vey. The data from this series of tests are being used to determine

the flow field properties downstream of a control jet, and are be-

ing applied in the efforts to develop a prediction technique.

Recently the NASA Langley Research Center and the U.S. Army

Missile Command's Advanced Systems Laboratory began a joint effort

to study the effects of a predominantly sonic jet injecting from

a flat plate into a subsonic freestream. The joint study consists

of an initial test phase that was completed in August 1969, a final

test phase to be completed later in 1969, and an analysis of the

data collected. The initial test phase was a flat plate pressure

test, while the final test phase will consist of a rake survey of

the jet wake.

The subsonic flat plate test data recently collected at Langley

Research Center has not been fully analyzed. However, a presenta-

tion of some of the significant aspects so far unveiled is present-

ed in Figures 8 through 14. The flat plate was oriented at zero

angle of attack for the tests and each test point was repeated

twice. Figure 8 shows the effect of pressure coefficient, Cp, vari-

ation with radial length, R, for a 0.33-inch diameter sonic nozzle

on the upstream ray (9 = 0) as well as the variation of Cp at each
orifice with the number of times the data was repeated. A slight

positive Cp immediately in front of the jet exists at this very low

freestream Mach number, 0.i, and momentum ratio (jet-to-freestream

ratio,Q) of 2.0. When comparing Figures 8 and 9 for the same mo-

mentum ratio but different Mach numbers (0.i and 0.6, respectively),

it becomes apparent that the scatter in the upstream ray of Figure

8 is that due to Mach number. At the lower Mach number the free-

stream flow around the jet fluctuates considerably. Most likely

the fluctuations exist at the higher Mach numbers but at a suf-

ficiently high frequency that their effect is damped in the length

of tubing from the static orifice to the pressure transducer located

outside the tunnel.
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Additional pressure distribution on rays @ = 90 ° and 150 ° for

the Mach number 0.6 and the momentum ratio 2.0 conditions are shown

in Figures i0 and ll. The @ = 90 ° ray shows only a small increase

in Cp near the nozzle. The 0 = 150 ° ray shows a negative Cp near

the nozzle that is caused by either entrainment or blockage or both.

Figures 12 through 14 show the effect of higher jet pressure

which is reflected in the momentum ratio increase to i00. Figure

12 shows a typical upstream pressure distribution with a signifi-

cant increase in Cp near the nozzle. This is because of the block-
age effect at the higher Mach number for this condition.

Figures 13 and 14 show the pressure distribution for the 90 °

and 150 ° rays, respectively. For this Mach number, 0.6, the lowest

value of pressure coefficient exists at the 90 ° ray at the pressure

orifice nearest the nozzle. Next examine the 150 ° ray and note the

lowest pressure exists an inch from the nozzle and some pressure

recovery near the jet has been manifested between the 90 ° ray and

the 150°; also the magnitude of pressure coefficient is less on the

150 ° ray.

Comparing Figures 9 through 11 with Figures 12 through 14, respec-
tively, shows that increasing the momentum ratio effectively moves the low-
est pressure (originally behind the jet) forward. The lowest pressure remains
near the jet. As this lowest pressure moves forward, a recovery process
apparently originates near the jet and moves outward along the rays.

The above comparison suggests that a tremendous viscous inter-

action process is displayed in these adjacent areas as the high

pressure region in front of the jet attempts to rush into low

pressure regions downstream of the jet. This in turn would suggest

that considerable mixing occurs not only in the freestream itself

but between the freestreamand the nozzle injectant.

The subsonic experimental data 3 was accumulated on the axi-

symmetric body, shown in Figure 15, with the pressure orifices.
The model is 2.25 inches in diameter, with rows of orifices 30 °

around the body from the jet. Both circular nozzles and radial

slot nozzles were used. The effects of a sonic, circular jet on

the longitudinal pressure distribution is shown in Figures 16

through 19. Figure 16 shows a typical pressure distribution on

the axisymmetric body. (The rows of pressure coefficient distri-

bution with longitudinal length X measured from the jet correspond
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to the rows shown in Figure 15. The row through the jet centerline

is the middle row with the discontinuous distribution at the jet

location.) There exists a small pressure rise upstream of the jet

on the jet centerline. However, the dominating factor is the low

pressure in back of the jet and on the adjacent rows of orifices.

As shown in Figures 16 and 17 the pressure profile changes very

little with angle of attack. An increase in momentum ratio fail-

ed to change the pressure distribution; it only succeeded in re-

ducing the upstream positive pressure and reducing the value of

negative pressure as shown in Figure 18.

The effect of a sonic, slot nozzle was to increase the positive

Cp ahead of the jet and reduce the negative Cp behind and on the
s_des of the jets, Figure 19. The reduction on the adjacent rows

is because the slots are much closer to the rows than when the jet

was circular. The same throat area existed for the slot as for

the circular nozzle. The injectant is spread over a large region

thereby causing a slightly greater disturbance to the flow field.

This, in turn, manifests a slightly greater change in aerodynamic

coefficients.

It was not felt that these various changes in chamber pressure,

angle of attack, or slot configurations changed the aerodynamics

of the body by a significant amount. The conclusion was that, for

the range of parameters tested, the sonic jet dominated the Mach

number 0.285 freestream so overwhelmingly that no other test vari-

able emerged except in a very weak manner. Logically, it would

appear that, because of curvature effects, the jet would dominate

the flow over an axisymmetric body more than it would for a flat

plate.

CONCLUSIONS

The following conclusions are drawn:

i. The Army Missile Command has been successful in the super-

sonic regime with a pure blockage model replacing the jet.

2. In the subsonic regime, based on the axisymmetric body

and the flat plate tests, the dominating factors appear to be (a)

the jet in the low subsonic regime and (b) viscous interaction in

the higher subsonic regimes.
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A BLOCKAGE-SINK REPRESENTATION OF JET INTE_NCE

EFFECTS FOR NONCIRCULAR JET ORIFICES

By J. C. Wu and M. A. Wright

Georgia Institute of Technology

SUM_t_RY

A study of the subsonic jet-in-crosswind problem is made by using a two-

dimensional potential-flow representation of jet interference effects. Analyses

are made for two different jet exit configurations: an ellipse with its major

axis alined with the free stream flow direction, and an ellipse with its minor

axis in the free-stream direction. In each of the configurations the jet issues

normally from the surface of an infinite plate into the crosswind. The model

uses a blockage-sink representation of the jet interference effects on the cross-

wind. _ne blockage element consists of a jet-exit-shaped cylihder wi_h _

attached afterbody and is used to simulate the effect of the jet-wake combina-

tion in displacing the crossflow. The sink element is placed in the afterbody

to simulate the combined effect of entrainment by the jet as well as by the wake.

Calculated pressure distributions on the plate are compared with experimental

data obtained with similar jet exit configurations. The results show that the

two-dimensional representation is useful for the case of high jet-to-crosswind

speed ratio.

INTRODUCTION

This paper treats the problem of a single subsonic turbulent jet issuing

normally from the su_'face of an infinite plate into a subsonic crosswind. It

has been observed that the presence of the jet in the crosswind leads to a

separation of the crosswind behind the jet. The combined effects of aerodynamic

forces acting on the jet and the entrainment of the crossflow fluid into the jet,

which carries momentum with it, causes the jet to spread, deform, and deflect

after leaving the plate. In turn, the jet interferes with the flow of the cross-

wind by displacing it, entraining it, and causing the separation region to form;

these three factors are usually referred to as the blockage effect_ the entrain-

ment effect, and the wake effect, respectively. Because of the complexity of the

jet interference phenomena, there is presently no complete theory treating the

detailed flow in this problem. In lift-jet or lift-fan powered V/STOL applica-

tions, the change in surface pressure due to the jet interference is of primary

concern. During the past few years_ several analytical flow models (refs. i, 2,

3) have been proposed as means of representing the jet interference effects,

Work supported by the U.S. Army Research Office_ Durham, North Carolina, under
contract No. DAHC04 68 C0004.
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and from these representations, the interference surface pressure can be calcu-

lated. The models have the common feature of requiring the use of either empir-

ical or semiempirical information concerning the path of the jet in the cross-

wind. Potential flow elements, that is, vortices or a combination of doublets

and sinks, are placed on or near the center line of the jet plume. The velocity

induced by the potential elements on the surface is used to calculate the inter-

ference pressure. The models differ in the factors that are accounted for (or

neglected) and in the manner in which these factors are represented. In two of

the proposed models the effect of entrainment is ignored. To the authors'

knowledge, no numerical results have been reported that use these models for

other than a circular jet exit configuration. Other models may result from the

extension of the work of Lu Chang (ref. 4_ concerning the time-dependent defor-

mation of a circular column of fluid in a crossflow. This extension is being

considered at the Georgia Institute of Technology as well as other places, but

results are at present inconclusive.

The principal objective of this paper is to demonstrate that for the case

of high jet-to-crosswimd speed ratio, it is possible to use a two-dimensional

approximation with a blockage-sink representation to study the jet interference

effects with noncircular as well as circular jet exit configurations. The case

of high-speed ratio is of particular importance for lift-jet or lift-fan powered

V/STOL aircraft in the transition phase of a flight. Results presented are for

elliptical jet exit configurations, the major axis of the ellipse being either

alined with or perpendicular to the free-stream direction.

SYMBOLS

A, B

Cf

C
P

d

k

m

n

P

P_

r

R, R
o

S

constants in conformal transformation, eq. (8)

integrated pressure coefficient

pressure coefficient, eq. (i)

diameter of a circ_!ar jet exit

half-width of Ra_kine oval

sink strength for entrairmlent

half-length of Rankine oval

local static pressure

free strem_ static pressure

plate radial coordinate

radial limits of integration, eq. (18)

strength of source-sink pair in Rankine oval
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U

v

u_

uj

X
S

z = x+iy_

C : g+i_,

_O

local velocity in direction of free stream

local velocity normal to free stream

free-streamvelocity

jet velocity

sink location for entrainment

plate complex coordinates

plate angular coordinate

Rankine oval complex coordinates

density

complex potential

Subscripts:

b blockage-induced velocity components

s sink-induced velocity components

Superscript:

( ) t _-plane velocity components

ANALYSIS

The blockage-sink representation has the advantage of being relatively sim-

ple and easily interpretable. In reference i an analytical model based on this

representation was developed. A doublet distribution along the jet center line

was used to simulate the blockage effect due to the jet plume, and a sink dis-

tribution was used to simulate the entrainment of crosswind fluid into the jet.

The authors of reference i stated that because of the manner in which the block-

age effect was simulated_ the representation of the flow near the jet was not

expected to be good. They showed that with a suitable choice of entrainment

coefficients_ the model gives a calculated surface pressure field in good agree-

ment with experimental data for a circular jet issuing normally from the center

of a large rectangular wing placed at zero lift and with a jet-to-crosswind

speed ratio of i0. Neither theoretical nor experimental results were presented

in reference i for a midspan of the wing covering a distance of i0 jet radii.

Experimental data from other sources (refs. 5 and 6), however, have shown that

the interference pressure on this portion of the surface contributes substanti-

ally to the overall interferenceeffects of lift loss and nose-up pitching

moment.
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In the present approximation the effect of variation of flow between planes

parallel to the plate is considered unimportant and ignored as far as the calcu-

lation of surface pressure is concerned. It is noted that the jet interference

problem is basically three-dimensional. Nevertheless, the simplifications and

versatility resultant from its use makes the two-dimensional approach attractive.

For example, the representation of noncircular jet exit shapes with the use of a

three-dimensional model involves considerable complications. To the authors'

knowledge, no analytical results using a three-dimensional model for other than

the circular jet exit configuration have been reported. As shall be shown, with

a two-dimensional model the generalization to noncircular jet exit shapes is

very straightforward. The question remains as to what is the region of validity

of the approximation. In reference 5 the authors presented some results using a

two-dimensional model for a circular jet. Many of the observations presented

in reference 5 are also pertinent to noncircular jets. These results are not

repeated here, but the major conclusions are surm_arized below.

Experimental observations indicate that if the jet-to-crosswind speed ratio

is sufficiently high, the jet deforms and deflects significantly only after it

has penetrated several jet radii into the crosswind. Since the velocity induced

by a three-dimensional blockage or sink element at a given point in the flow

field is inversely proportional to the square of the distance between the ele-

ment and the point, three-dimensional effects on the interference surface pres-

sure are expected to be small for the high-speed-ratio case, particularly in

regions close to the jet exit. A surface pressure distribution was calculated

by using a large number of three-dimensional doublets and sinks placed along an

empirical jet-center-line path for a speed ratio of 8. The result was shown to

agree very well with that obtained with an equivalent two-dimensional represen-

tation. Thus, for the circular-jet case, the effect of jet deflection was con-

sidered to be unimportant for speed ratios in excess of 8. The same conclusion

is expected to be valid for noncircular jets, as long as the jet penetration is

not much less than that for a circular jet at a speed ratio of 8.

Two other questions were also discussed in reference 5. The first concerns

the justification of using a potential model to represent the jet interference

effect on the crosswind, and the second concerns the relative importance of the

entrainment effect. It was felt that, outside of the jet plume and its wake,

the crossflow is essentially inviscid and the use of a potential flow representa-

tion is justified. However, inasmuch as there exists an extensive wake region

of low total pressure, the representation of the entire crossflow by a constant-

total-pressure potential-flow model is too strong a requirement on the model.

Accordingly, a region downstream of the jet covering a total angle of 90 ° was

excluded from the surface pressure calculations. With the exclusion of this

wake region, it was shown that the entrainment effect, contrary to some previous

conclusions, contributes significantly to the jet interference.

It should be noted that the two-dimensional approximation used here is not

related to the two-dimensional slotted jet problem which is also of current

interest.

Aside from the simplifications resulting from the use of the two-dimensional

approach and the subsequent extension to noncircular jet exit shapes, the present
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model differs from the blockage-sink model used in reference i in that, in addi-

tion to representing the effect of jet plume blockage, an attempt is made to

simulate the effect of the wake blockage by attaching an afterbody to the cylin-

der. It has been shown in reference 6 that the pressure distribution around a

solid circular cylinder calculated from potential theory accounting for only the

cylinder blockage differs greatly from experimentally observed pressure distri-

bution on a plate to which a solid circular cylinder is attached perpendicularly.

Figure i presents a comparison of the calculated and experimentally obtained

constant-pressure contours shown in terms of the pressure coefficient Cp
defined by

P - P" (i)
Cp =  ou.2

The dashed curves are calculated contours and the solid curves are experimental.

Since the effect of plate boundary layer on the plate pressure is of secondary

importance (ref. 6), it is suspected that the effect of blockage of the crosswind

by the wake is of considerable importance. Accordingly, constant-pressure con-

tours on the plate were calculated by use of a solid cylinder-afterbody repre-

sentation and compared with the experimentally measured pressure distribution

around a circular cylinder in figure 2. Again, the dashed curves are calculated

contours and the solid curves are experimental. The shape of the afterbody used

in the calculation is also shown in figure 2. The manner in which this particu-

lar afterbody shape is obtained will be discussed later. The agreement between

the two sets of contours is satisfactory outside the excluded wake-flow region.

It is noted that the solid circular cylinder case, aside from the plate boundary-

layer effect, is truly two-dimensional. A comparison of figure i with figure 2

shows that the addition of the afterbody significantly improved the blockage

representation.

In addition, the present analysis considers the entraimnent of crosswind

fluid to take place mainly through the wake rather than along the jet periphery,

as was assumed in reference i. There is some evidence supporting this approach

(ref. 7), although detailed information concerning the detailed entrainment

mechanism involving nonparallel streams is still lacking. It is recognized that

the entrainment effect is better represented by a distribution of sinks along

the jet and wake periphery, but in the absence of empirical information, a single

sink placed in the afterbody is used to simulate the lumped entrainment effect.

Preliminary studies using a distribution of sinks along the line of symmetry

were made. It was found that the resulting interference pressure did not differ

greatly from that obtained by using an equivalent single sink. As in refer-

ence 5, no attempt is made here to simulate the flow in the wake or to calculate

the interference pressure in a region where viscous effects are thought to be

highly important. Because of the present uncertainty concerning the character

of the wake, the development of an analytical model representing the wake flow

must await further detailed experimentation.

With the potential-flow model, the blockage-induced velocity and the

entrainment-induced velocity are superpositioned to give the total interference

velocity. The simulation of the blockage effect of the jet-wake combination is

obtained from the flow around a transformed Rankine oval. The oval, formed by
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placing a source of strength S at the point (_i,0) in the L-plane (_,h) and a

sink also of strength S at (_2,0), with _2 > _i' in a uniform stream U_ in

the positive i-direction, is shown in figure 3. The complex potential for this

flow is

co =-U _ - S in (_ - _i) + S in (_ - _2) (2)

and the complex velocity is

, , d_ U - S S= - + (3)
-% + ivb d_ r_ - -_l _ - _2

!

where ub and v_ are, respectively, the _- and h-components of the flow veloc-

ity, the prime denoting that these quantities are the components in the i-plane

and the subscript b denoting that the velocity results from blockage.

It is straightforward to show that the oval is symmetrical about both the

i-axis and the line _ = (_i + _2)/2" The half-length of the oval is

n=_ 2

and thus the upstream stagnation point is (_3,0), _3 being given by

(4)

-_1 + -_2 (5)
"_3 = 2 - n

The shape of the oval is given by the equation

(_2 - _l)h = tan U____

_2 + h2 _ _i - _2 + _i_2 S

(6)

and k, the half-width of the oval, is given by

ctn _ 4k(_2- _i) 21 (7)

If any two of the four parameters, B2 - _i, S/U , n, and k, are given,

the shape of the oval is determined.

Consider now a solid line segment extending from the point (_4,0) to the

upstream stagnation point of the oval (_3,0) and coinciding with the G-axis,

_4 > ,_31 as shown in figure 3. The line is taken to bewith < 0 and I

attached to the oval. Since the flow past the oval is symmetrical about the

t-axis, the presence of the solid line does not disturb the flow. The

transformation
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z =At +B__2 _ _42 (8)

maps the solid line segment in the i-plane into a portion of an ellipse in the

z-plane as shown in figure 4. The semiaxes of the ellipse, which has its center

coinciding with the origin of the z-coordinates_ are _4A and _4B. The semi-

axis _4A coincides with the x-axis and may be either major or minor. The flow

past the line segment plus the Rankine oval in the _-plane corresponds to the

flow past the ellipse with an afterbody in the z-plane, the shape of the after-

body being that of the Rankine oval transformed in accordance with equation (8).

The size of the ellipse is determined by the value of _4" By varying the

parameters k and n_ a variety of afterbody shapes are obtained. The points

of attachment where the afterbody is joined to the ellipse are given by

x : A_3 (9)

y = ±B_4 2- _32

The complex velocity in the z-plane is given by

(io)

where

+ =

d_ is given by equation (3) and

(il)

d_ = A + B_ (_)
d_ _2 _ _42

The computation of ub and vb in the z-plane from equation (ii) is easily

performed by first finding the values in terms of a given value of _, and then

determining the value of z corresponding to that value of _ obtained by use
of equation (8).

The entrainment effect is simulated by placing a point sink of strength m

in the z-plane at the point (Xs,O) with x s > _4A. The complex velocity due to

the sink in the z-plane is simply

= m (13)
-Us + iVs z - x s

where the subscript s denotes sink- or entrainment-induced velocity components.
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The total velocity components due to the cylinder-afterbody blockage and

the sink are given by

u = ub + us (14)

v = vb + vs (15)

For a constant-total-pressure potential flow, the pressure coefficient Cp,
with U_ assigned the value of unity for simplicity in computations, is

Cp=l_u2- (16)

It is noted that the case of a circular-shaped jet exit is a special case

of the above. The transformation (8) for this special case becomes, with

A = 1/2, B = 1/2, and _4 = d, the diameter of the circle,

z =_ + -

Results for a circular-shaped jet have been presented in reference 5. In

the present paper, interference surface pressure fields are calculated by using

the two-dimensional blockage-sink model for an elliptically shaped jet exit with

a major to minor axis ratio of 3.36. This ratio is selected so that the calcu-

lated results may be compared with experimental results using jet exit configu-

rations approximating the elliptical shapes. The experimental data were obtained

in the Georgia Institute of Technology 9-foot low-speed wind tunnel. A descrip-

tion of the experiments is given as a part of this Proceedings, in a paper

authored by H. M. McMahon and D. K. Mosher. It is noted that the experimental

jet exits are not elliptical, but are slotted with a total length of 3.36 inches

and a width of 1.00 inches, as shown in figure 5. In the calculations, _4 is

selected so that the major and minor axes of the ellipse have, respectively, the

values 3.36 inches and 1.00 inches. The area of the ellipse, however, is

approximately 16 percent smaller than that of the jet exit in the experiments.

Calculated pressure contours for the elliptically shaped jet with the major

axis of the ellipse alined with the free-stream direction are compared with

experimental results for a speed ratio of 12 using the slotted jet exit with the

length of the slot oriented stresmwise. Figure 6 shows this comparison, with

the calculated contours shown as dashed curves and the experimental contours

shown as solid curves. It is seen that, with the choice of the parameters as

given on figure 6, the two sets of contours agree well with each other over a

large region on the plate. The calculated surface force distribution around the

jet, represented by the integrated pressure coefficient
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Cf =_R Cpr dr

O

(18)

where Ro is the contour of the jet exit, is compared with experimental data in

figure 7. Again, good agreement is observed.

Similar comparisons are given in figures 8 and 9 for a jet with its longer

dimension perpendicular to the free-stream direction. The calculated results

are for th_.....p]l__v_J.... _ shaped j_....._d the e_perimenta! _n_ ...._ _ the

slotted jet at the speed ratio of 12. Again_ good agreement is observed.

Results for speed ratios other than 12 were also obtained, although not pre-

sented here. In general, the calculated results, with a suitable choice of

parameters, agreed reasonably with the experimental data over a large region

on the plate.

In selecting numerical values for the parameters used in the calculations,

available experimental contours are used as a guide. Thus the present model,

like previously proposed models, requires empiricism. The calculation procedure

required in the two-dimensionalmodel, however, is sufficiently simple to permit

a parametric study from which the dependence of these parameters on the jet-to-

crosswind speed ratio and on the jet exit shape may be obtained. This work is

presently in progress.

CONCLUDING R_TCRKS

The present work is motivated by a need to establish a better basic under-

standing of the jet interference phenomena. Attempts are therefore made to

select a simple and yet physically interpretable model to represent the jet

interference effects. In this regard, the two-dimensional blockage-sink repre-

sentation appears to be successful. In view of the perhaps drastic simplifi-

cations introduced_ the observed agreement between the calculated interference

pressure field and the experimental data for noncircular as well as for

circular jet exits is encouraging. Some dependence on empiricism is presently

unavoidable in developing any analytical model with the hope of representing

the very complex interference flow. In the present analysis, this dependence

leads to the selection of the parameters n and k_ which are, respectively,

related to the length and width of the wake, and to the selection of m and Xs,
which are related to the entrainment effects. In the calculation of the

interference pressure outside of the wake-flow region_ the effect of the wake

blockage length does not appear to be important. This has been verified by

computational results. The most pertinent parameters are therefore k, Xs, and m.

The dependence of these three parameters on the jet-to-crosswind speed ratio and

on the jet exit shape needs to be obtained experimentally. Preliminary results

based on the parametric study using the two-dimensional model, however, lead

to certain conclusions which appear to be physically reasonable. For example,

the trend concerning the entrainment rate is that, with the crosswind speed

held constant, the amount of crosswind fluid entrained increases with increasing

jet speed. The conclusion that the entrainment takes place mainly through the
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wake (ref. 7) is substantiated by the analysis in that the results with the

point sink placed inside the afterbody led to better agreement with experimental

data than the results with the sink placed at the center of the jet. It was

also found_ contrary to the indication of oil film photographs (ref. 5), that

the use of a narrower wake, that is, afterbody_ at higher speed ratios gives

calculated results in better agreement with experimental data. This may be

explained by the fact that the jet entrains a greater amount of low-energy

crosswind fluid at higher speed ratios and hence delays the separation. Addi-

tional parametric studies using the two-dimensional model are in progress. It

is hoped that these studies will lead to additional information enabling better

predictions of interference effects and perhaps areas of experimental emphasis

as well as possibilities of alleviating the adverse interference effects.

For a jet with a speed ratio significantly less than 8_ three-dimensional

effects are expected to be important because of the rapid deflection of the jet.

The two-dimensional mode! described here provides a basis for the development

of a more refined three-dimensional model. The extension will require the

specification of a number of additional parameters_ such as the variation of

the entrainment rate along the jet path_ the deformation of the jet_ and the

wake geometry along the jet path. Furthermore_ experiments indicate that far

do_mstream of the jet exit_ the jet plume deforms to a kidney shape containing

a pair of vortices. It is uncertain at the present time whether the effect of

this vortex pair is of primary importance to the interference pressure. This

question as well as the formation of and detailed flow in the wake region appear

to be areas requiring further investigation.
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DEVELOPMENT OF AN ANALYTICAL MODEL FORTHE

FLOW OF A JET INTO A SUBSONICCROSSWIND

By P. T. Wooler

Northrop Corporation
Aircraft Division

SUMMARY

The interaction between a jet exhausting at a large angle from a surface into a

subsonic crosswind is discussed. The problem of determining the position of the jet
centerline is considered first. An anal_ical model is discussed which represents
the deflecting mechanism by mainstream entrainment and a pressure force. Two
methods for obtaining the jet induced velocity field are explored. The first, a

vorticity model, is shown to be useful for V/STOL preliminary design. The second
method, a sink-doublet model, describes the flow in more detail and is shown to pre-
dict wing surface pressure distributions which agree very well with test data.

INTRODUCTION

There is considerable interest in airplanes with the capability of taking off and
landing in a short distance. One method of achieving such performance is to use lift-

ing jets or fans, installed in the wing or fuselage of the airplane and exhausting at right
angles to the direction of flight.

In the transition phase of such flight, important jet on airstream interference
problems arise. It has been demonstrated experimentally that in the transition phase
the jet induces an asymmetric pressure loading on the surface from which it is
exhausting. The pressure loading can adversely affect the lift and pitching moment on
the airplane, usually in the form of significant losses in the lift and an appreciable

increase in the nose-up pitching moment. The development of a satisfactory theoreti-
cal model of this type of flow field is therefore desirable to assist in the design of
V/STOL airplanes and to enable a satisfactory wind-tunnel correction method to be
developed for powered-lift wind-tunnel testing.

In this paper the development of an analytical model for the flow of a jet into a
subsonic crosswind is discussed. The development of a method for calculating jet
centerlines is considered first and then the problem of determining the jet cross flow
interference velocity field is investigated.
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SYMBOLS

A°

]

b

C

C D

C

C
P

d

E

E l, E 2,

K

L i, Mi

m

m-

R

S

S

T

U

U.
]

W

x, y, z

X.
J

0

E
3

Jet cross-sectional area

Wing span

Circumference of jet cross section

Crossflow drag coefficient of jet

Wing chord (root chord for delta wing)

Pressure coefficient

Length of major axis in elliptical representation of jet cross section

Mass entrainment of mainstream fluid into jet per unit length of jet

Entrainment coefficients

Jet area factor, A. = Kd 2
J

Interference lift and moment (value with jet on - value with jet off)

Velocity ratio, Ujo/U

Sink strength of jet element

Local jet radius of curvature

Coordinate along jet centerline

Wing surface area

Thrust of jet

Mainstream speed

Jet speed

Complex velocity potential for ellipse

Coordinate system defined in Figure 1

x-coordinate of center of exhausting jet

Coordinate in complex plane

Angle defined in Figure 1
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p

F

Subscripts :

O

Jt

Doublet strength

Jet and mainstream density

Jet circulation per unit length

Refers to conditions at the jet exit

Refers to interference value (value with jet on - value with jet off)

THE JET CENTERLINE

When a jet exhausts at an angle into a cross flow, it is deflected into the

cross flow direction due to the effects of viscous entrainment of the cross flow by the
jet and also due to cross flow induced pressure forces on the jet boundary (Figure 1).
A method for calculating jet centerlines and the jet induced velocity field b2.s been
presented in Reference 1. It is assumed in this model that the mass entrainment E of

the crossflow into unit length of the jet is given by

pE 2 (Uj- U sin0) C

E = pE 1 Udcos + I+E 3 Ucos 0/Uj (1)

It is also assumed that the pressure force on a jet element of unit length is

1 U2 2
C D _- p cos 0d (2)

The equations of continuity and tangential momentum for the jet may then be
deduced by taking U. to be the mean jet velocity. The centrifugal force is equal to

J
the mass of air entrained times the normal free stream velocity component plus a
drag term given by equation (2). This force is equal to the rate of change of the jet
momentum in a direction normal to the jet centerline.

The equations of motion for the jet development are then

d E (3)
p _- (AjUj) =

dp_ (Aj ) = EU sin 0 (4)
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p Aju 2 d2x
J dz 2 1

- (E + _- C DpUdcos 0) Ucos 0
(5)

To solve these equations, it is necessary to postulate the cross-sectional shape

of the jet. It is assumed that the jet changes linearly from the circular cross section
to an elliptical section of 4 to 1 major to minor axis ratio in a predetermined distance
proportional to the initial jet diameter and to the initial jet velocity and retains this

section thereafter. This assumption permits Aj to be written as a function of d, the
jet major axis.

Equations (3), (4), and (5) are then a set of differential equations for the

variables x, Uj, d as functions of the variable z and the parameters El, E2, E3, and

C D •

CD is taken to be 1.8,a representative value for the drag coefficient of an ellipse.

E 2 is set equal to . 08 to give correlation with the data of Reference 2 for the free jet

case.

The entrainment coefficients E l, E 3 are chosen to give correlation with available

test data for jet centerlines. This correlation is demonstrated in Figure 2.1 Although

the comparison in Figure 2 is for jets exhausting normally to a wall, equations (3)
through (5) may be solved for other values of the angle between the jet and crossflow.
A change in angle simply involves a change in the boundary conditions for the differen-
tial equations.

The differential equations (3) through (5) may be solved in closed form in the
special case when 0 - 0 and the velocity ratio is not too large. For, in this case
equation (1) may then be written

E = p E1Ud (6)

and equations (3) through (5) reduce to

d
P _zz (A.U.) = EJ J

(7)

dp _-_ (Aj )--0
(8)

iReferences 3 and 4.
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pA.U_. _d2x = (E + 1
} j dz 2 _ CDpUd) U

tf we now assume that A. is proportional to d 2 and write
J

(9)

A. = Kd 2
J (i0)

K being a constant, then equations (7) through (9) may be integrated.

For the case in which the jet is exhausting normally into the crossflow, the
following expression follows for the jet centerline

x [ <;1o)z ]_-= 2 exp md K md o -1
o 2E 1

(11)

This expression has the interesting property that it implies that x/d o is a function of
z/mdo. This functional relationship is verified in Table 1 using data obtained from
Reference 3.

This functional relationship has been shown to be valid for large values of m in
Reference 5 where the formula

(x/do)2 = 7 (z/redo)5 (12)

was obtained for the jet centerline.
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TABLE i. TABULATION OF EXPERIMENTAL DATA (REFERENCE 3)

m

z/rod
Ox/d o

1

1.5

0.66

0.79

O. 65

O. 79

.

O.

67

80

2

2.5

3

4

6

10

0.89

0.98

1.06

1.17

1.36

1.63

0.88

0.99

I. 06

1.18

1.39

i. 64

0.91

0.99

1.07

1.19

1.38

1.60

JET INDUCED VELOCITY FIELD

Jet induced interference forces and moments can be significantin a V/STOL

concept and itis desirable to be able to estimate these effects. Two methods will be

discussed in this paper. The firstis a vorticity model which replaces the jet by a

series of horseshoe vortices. The strength of the vortices are determined from the

jet momentum flow and the curvature of the jet centerline.

The second model is a sink-doublet mode!. The sinks represent the entrainment

of the crossflow fluid by the jet and the doublet represents the blockage effect of the

jet on the mainstream.

VORTICIT Y MODE L

When the jet leaves the nozzle it is deflected into the crossflew direction and
its cross section changes from its initial circular section into a kidney-type shape as

illustrated in Figure 1. Two contra-rotating vortices are observed in tests involving
jets in a cross flow. These vortices are observed to grow in strength as the jet is
deflected further into the crossflow direction and it would appear that they ought to

make an important contribution to the jet induced velocity field.

Consequently, in the vorticity model presented in Reference 6, the jet is replaced

by a system of horseshoe vortices (see Figure 3). An empirical equation

x/d o : o19 m 2 [cosh (z/.19 m2do)]- I (13)
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is used for the jet centerline.

(1)

(2)

It is assumed that:

The jet momentum flow p A.U 2 is constant along the jet path.
J J

The force on a je_ element of length 6 s, normal to the centerline, is equal

to pA.U 2. 6 s/R where R is the local radius of curvature derived from
J J

equation (13).

(3) The mainstream flow near the jet is assumed to be along the jet path
direction and to have a mean velocity equal to the undisturbed mainstream
velocity U.

With these assumptions the circulation, F, per unit length of the jet is given by

/__ _r o (14)
U 4 R

Together with this jet "bound" vorticity there is a trailing vorticity which is a
consequence of this "bound" vorticity. This trailing vorticity, which increases in
strength as it moves from the jet exit, accounts for the eventual breaking up of the jet
into a vortex pair discussed earlier.

The velocity field due to the interference of the jet on the mainstream is obtained
by dividing the jet into a number of elements, the vorticity of each element being cal-
culated from equation (14). Each element is replaced by a horseshoe vortex, the
trailing arms of the horseshoe vortex being one jet diameter apart.

Calculations of the velocity field enable the jet induced velocity field on any
neighboring surface to be obtained. Using a lifting surface theory for a finite wing
and an image system for an infinite fiat plate enables wing loadings and pressure
coefficients to be derived. Figure 4 shows calculations of the pressure coefficient on
a flat plate. 1 Calculations of the interference lift and moment for a delta wing are
shown in Figures 5 and 6.

The vorticity model is very easy to use and is useful for obtaining the significance
of the parameters involved. For example, Figure 7 shows how m and x./c affect the

}
interference lift and moment for a 60 degree delta wing. Figure 8 shows the impor-
tance of the area ratio S/A.. This figure shows the variation of the interference lift

jo
with area ratio for a given jet static thrust and free stream velocity when either the jet
area or wing area is kept constant.

iReference 7.
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SINK-DOUBLET MODEL

The sink-doublet model is a natural extension of the method for obtaining the jet
centerline discussed earlier. The interference effects of the jet are accounted for by
distributing sinks and doublets along the jet, as illustrated in Figure 9. The sink

strengths m-are made proportional to the mass of air entrained by the jet. That is

E_s
m- - pd (15)

The doublets represent the blockage effect of the jet, and their strengths, p, are

obtained from the coefficient of the 1/_ term in the complex velocity potential expansion

W(]) for the two-dimensional flow past an ellipse.

Thus

rrUd2 5 z

= _ 1 4 mdo (16)

in the region where the jet is deforming from a circular to an elliptic section, and

rrUd 2
= 4 (5/8) (17)

after the jet has achieved its final elliptic section.

The jet induced velocity field can be calculated and wing loadings can be
obtained by making use of a lifting surface theory. Calculations of wing loadings using

this model are shown in Figure 10 and show good correlation with test data.

The normal procedure for calculating surface pressure distributions has to be
modified in the case of a wing containing a jet exhausting at an angle into a mainstream.
The reason for this is that besides inducing a velocity normal to the wing, the jet also
induces a velocity tangential to the wing surface which may be of the same order of
magnitude as the induced velocity due to the lifting effect of the wing. Thus, although
this jet induced tangential velocity has only a minor effect on the wing loading, it may
cause a significant change in the surface pressure field. That there is a significant
effect is illustrated in Figure 11. Figure 11 demonstrates that the loading is not dis-
tributed equally on the upper and lower surfaces, which would be the case without the

effect of the jet.

Figure 12 shows the theoretical and experimental interference spanwise loading
for the wing of Figure 10. The theoretical predictions are quite good although it is
noticed that the tendency is to smooth out the loading which suggests that an improve-
ment in the numerical procedure employed in the lifting surface program would im-
prove the correlation.
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CONC LUDING REMARKS

An analytical method has been developed for predicting jet centerlines for jets
exhausting at right angles into a subsonic crossflow. The method calculates center-
lines which are in good agreement with wind-tunnel test results. This method can be
extended to include cases when the jet is exhausting into a crossflow at angles other
than 90 degrees.

A vorticity method for calculating the jet interference velocity field has been
discussed. Calculations for the lift and pitching moment demonstrate the usefulness

of the method for undertaking a parametric study.

An alternative model which replaces the jet by a distribution of sinksand doublets
is also discussed. Calculations of wing surface pressure distributions for a single jet
exhausting at right angles into a crossflow indicate that this approach will also be a
useful method for design purposes. This second method has the advantage that it can be
extended to include jet deflection angles other than 90 degrees, multiple jets, changes
in power and changes in crossflow velocity.
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NUMERICAL TREATMENT OF LINE SINGULARITIES FOR

MODELLING A JET IN A LOW-SPEED CROSS FLOW*

J. G. Ski fstad

School of Mechanical Engineering
Purdue University

Lafayette, Indiana

SUMMARY

A simple analytical model for the jet in a low-speed cross flow, comprising
two contra-rotating line vortices and a line sink, is described. The numerical
formulation of the nonlinear problem and an iterative procedure for its solu-
tion are discussed. Means for achieving a more complete analysis by modifying
the simple model are considered.

INTRODUCTION

The aerodynamic design of VTOL aircraft would benefit greatly from improved
means for determining the aerodynamic influence of the lift jets under widely
varying conditions. Reliable theories would offer highly useful means for that
purpose and would serve to complement the experimental data. Unfortunately,
the theoretical problem is essentially nonlinear. Aside from that inconve-
nience, the problem cannot be accurately formulated in a strict sense because
the turbulent transport properties for three-dimensional free shear layers may
only be roughly estimated at best. Experience with semi-empirical theories has
shown that reasonable and occasionally accurate results may be obtained with
rather rough analytical models of the jet (ref. I). It may be anticipated,
then, that approximate theoretical models of the jet interaction may be suffi-
ciently accurate and reliable for some aerodynamic purposes. The principal
concern in this context is the characterization of the aerodynamic effects of

the jet rather than the structure of the jet proper.

The object of the study discussed in this paper was to formulate and ex-

amine the numerical properties of an analytical model of the jet interaction

problem, subject to the conditions:

*This study comprises part of the activity sponsored by the NASA Langley
Research Center under Grant No. NGR 15-005-094, initiated in February 1969.
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(a) the model should include the principal dynamical aspects of the
coupling between the jet and the aerodynamic field,

(b) the initial model should be as simple as possible, but should lend

itself to more complete representations without major changes in the

basic formulation, and

(c) there should be the capability to extend the analysis to include

multiple jets without major changes in the formulation.

As indicated in item (b), the initial model was chosen to be as simple as

possible, while retaining the dynamical aspects of the problem judged to be

of primary significance. The emphasis was to examine the numerical behavior

of nonlinear iterative schemes applied to the solution without the burden of a

more sophisticated representation of the jet.

SYMBOLS

A

D

F

h

Ii,I 2

M

m

n

R

r,r

s

U

V

V

x,y,z

120

cross-sectional area of the jet

diameter of the jet nozzle

force acting on the jet

Itx FI

factors in the integrations for the induced velocity

local integrated momentum flux of the jet

local mass flow rate of the jet

unit vector normal to the jet trajectory

radius of curvature of the jet trajectory

vector between a field point and a source point and its magnitude,

respectively (see Fig. 3)

distance along the jet

unit vector tangent to the line singularity

free-s tream veloci ty

local velocity in the jet

vector velocity at a point on one of the line singularities

Cartesian coordinates of the line singularities



Greek Symbols

B

r

K

P

0

U/V o

circulation of the line vortex

factor in the expression for the flow area of the jet

mass density of air

strength of the sink singularity per unit length

Subscripts

n

0

S

V

x,y,z

normal to the jet trajectory

evaluated at the nozzle exit plane

associated with the sink singularity

associated with the line vortex

component in the indicated coordinate direction

ANALYTICAL MODEL OF THE JET

The simplified analytical model of a single jet chosen for the initial

computations comprised a pair of contra-rotating streamwise line vortices and

a line sink positioned midway between the line vortices. Figure 1 illustrates

the arrangement of the singularities and the coordinate system for the computa-

tions. For a single jet as shown in Fig. I, the two segments of the curves,

x,y > 0 for the sink, and x,y,z > 0 for the line vortex, are regarded as inde-

pendent, the other elements of the curves being related to them by symmetry.

The strengths of the line vortices were presumed constant and known. The

ratio B = U/V^ was also assumed to be given. The positions of the curves in
space and theVdistribution of the sink strength along the central curve were

to be determined in the solution.

Continuity within the jet flow was simply treated in this initial model

by relating the local flow rate in the jet to an area arbitrarily assumed to be

proportional to the square of the spacing between the line vortices. That is,

a certain similarity of the cross-sectional shape of the jet at different

streamwise positions was assumed (see ref. 2). Thus, if

AIA o = I + K(z21z 2 - 1)
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then, since

m'mo s'O°= _-o : 1 + 16B o%

one has finally

(I)

The entrainment of mass per unit length is given by 4_po.

The line vortices were regarded as free streamlines in the tangent plane

of the jet; that is, they were considered free to establish equilibrium posi-

tions in the z-direction, such that

(v x t-)z = 0 (2)

along each curve.

The integrated streamwise momentum flux in the jet was approximately

treated by assuming it to be related to the entrainment of mass in the jet

according to the expression

dM dm
(Is = Utx d--s

The latter may be rewritten in integrated form as

M slD o d(slD) (3)
M - 1 + 16B 2 % _-t x
0 0

Finally, the force per unit length of the jet acting normal to it was re-

lated to the integrated streamwise momentum flux of the jet and its radius of

curvature.

M (4)
Fn =

The force F_ was evaluated as the sum of the forces per unit length acting on

the three l_ne singularities at any given position along the jet. For the

sink singularity (ref. 3) one has

Fns : 4_pov-n (5)
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and for the line vortices (ref. 3) the expression is

Fnv : 2pr(v x t).n (6)

Combining Eqs. (4), (5), and (6), and solving for R/D yields

= (M/M° 682 -o v rV+ 2--_-U-( x_ • n (7)

L
The x and y coordinates of the jet trajectory may be expressed {ref. 4) in

terms of R as

ss }x = f [sin f ds'/R(s')] ds
0 0

S S

y = f [cos _ ds'/R(s')] ds0

(B)

Equations (1), (2), (3), (7), and (8) are to be satisfied by x,y,z, and o at

each position s along the jet. The velocity v in Eqs. (2) and (7) may be
expressed (ref. 5) in terms of the geometry and _ as

f fv =U+ r--_ds

line sink

vorti ces Iine

(9)

The analytical model as described above is not considered to be complete

in the sense that a number of unnecessary, but expedient approximations are

involved. As noted in the introduction, the object of this initial study was

to examine the numerical properties of the problem, and the model described

did include what were considered to be the principal factors having a bearing

on the numerical problem. A more exact representation of the problem may be

prepared without introducing significant changes in the numerical scheme.

Furthermore, the model could rather simply be extended to include several jets.

The aerodynamic shape of the jet provided even by this simplified model is

not unlike that observed. For example, the streamlines in a plane cutting the

jet near its origin appear as shown schematically in Fig. 2. The wake of the

jet is, of course, entirely neglected by the model in its initial form.

It may be noted that if r/DU in Eq. (7) is a constant, as might be anti-

cipated, the formulation of the problem in non-dimensional terms, indicated in

the format of the equations, yields solutions with the single parameter B.
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NUMERI CAL FORMULATION

While the line singularities extend to infinity in the analytical model,
the numerical treatment requires approximating the lines by finite line ele-
ments, introducing some degree of error. The computational scheme represented
each of the two independent curves (the sink and one of the vortices) by 40
points equally spaced along the line. A straight line element tangent to the
end of each line was found adequate as an "end correction," compensating for
the truncation of the theoretically infinite line. The computational scheme
adopted proceeded as follows.

Initial Trajectory of the Jet

A trial set of points representing the two curves was first chosen to
start the computations, Each curve was represented by an even number of se-
quentially numbered points, not counting the point on each curve in the x-y
plane. Local interpolation parabolas were determined for sets of 3 points
centered at each of the odd-numbered points along a given line singularity.
The length of each segment was then computed, the total length of each curve
was determined by summing the lengths of the segments, and the increment AS
required for equally spaced points was computed. A new set of points, equally
spaced along the initial trial curve, was finally determined as starting data.

Smoothing has been found to be a necessary part of the computational
scheme to prevent the development of unstable irregularities in the curves,
particularly following an iterative change in the locus of a curve, but also in
the initial trial data. A seven-point cubic smoothing routine (ref. 6) was
employed to smooth the values. The seven-point cubic routine has been found to
work well with the functions considered; higher difference smoothing has been
found to be too severe in some circumstances.

Following the smoothing operation, the trial point sets were re-entered
as initial data, and the above procedures were repeated, except for the
smoothing. In addition, the local length of each curve at all points, together
with the components of the tangent and normal vectors, were computed.

A trial distribution for o (s) was chosen along with the initial coordinate

data. Those values were also conditioned and smoothed, as discussed for the

point sets.

Computation of the Velocity Induced at Points Along Each Singularity

The velocity induced at a point on one of the line singularities may be
determined according to Eq. (9), which involves summing the line integrals over
all of the singularities present, including, of course, the images of the curves
considered in the initial trial point sets as shown in Fig. I. For a given
"field" point, the integrals were treated numerically by approximating a line
element about a "source" point by a straight line segment of length AS, tangent
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to the singularity curve, as illustrated in Fig. 3, and summing over all of the
points on the singularities. For a vortex line segment, one has

where

s+as/2 dsx F tx F

I r_ - h_--- 11
s-As/2

h = It x r-l, and

I
t.r + As/2

[h2 + (_._ + as12)2] ½

t.r - As/2

[h 2 + (t._ - AsI2)2] ½

For a sink singularity, the expression is

s+as/2 OIl(t x r) x
- o I rds/r 3 = - + o12t

s-As/2 h_

where
I I

-

In the computational arrangement, the contributions of a line segment about a
"source" point and those of its images were computed simultaneously employing
symmetry relations for the local properties of the curves.

Iteration Procedures for Adjusting the Positions
of the Curves and the Sink Strength Distribution

Before proceeding with the iterations, the free-stream velocity, U, was

adjusted slightly to ensure that the line vortices at their intersection with

the x-z plane remained stationary. That option was chosen for the initial

computations over the alternative of changing the initial positions of the vor-

tices at that point. The change required in U was generally rather small and

did not tend to affect the iteration procedure adversely. The x-components of

all computed velocities were adjusted accordingly.

The first step in the iteration procedure was to allow the line vortices
to assume their equilibrium positions in the z-direction, corresponding to the
trial coordinates (x,y) of the jet trajectory. That is, the condition given
by Eq. (2) was to be satisfied at all points on the line vortex. For rough
computations it was found that the approximation obtained by taking the equili-
brium separation of a pair of infinite, parallel, rectilinear vortices tangent
to the jet at each point was quite reliable. For further refinement, changes

in the z-coordinate were taken proportional to (v x t)z" The predicted cor-
rections were smoothed using the 7-point cubic smoothing routine. Between
iterations the adjusted point sets were conditioned as described for the ini-
tial data, but without further smoothing.
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Whenthe condition (2) was satisfied to within an acceptable error, the
variation of the integrated streamwise momentumflux in the jet was determined
by numerically integrating Eq. (3). Given those values, the continuity ex-
pression for the flow in the jet, Eq. (1), yielded the variation of _ with
distance along the jet. A differentiation expression based on five-point
Lagrangian interpolation (ref. 6) was employed for the computations.

Following the determination of the new_ values, the entire procedure was
repeated until the condition that the vortex lines assumetheir equilibrium
positions was again satisfied, Eq. (2). That normally required no further iter-
ation because their positions in the z-direction were rather insensitive to
the sink strength.

Finally, Eq. (7) was employed to compute the distribution of R along the
jet. Through Eqs. (8) a projected trajectory for the jet could be determined
corresponding to the computedR variation. Unfortunately, no straightforward
or reliable iteration schemefor adjusting the position (x,y) of the jet tra-
jectory could be established without someexperience with the behavior of the
functions involved. The evidence indicated that a conventional Newton-Raphson
technique would not be likely to be successful in projecting the coordinate
positions. Rather, it was determined that efforts should be concentrated on
changing the R(s) variation iteratively. While a completely satisfactory itera-
tion schemewas not established, a refinement of the following schemeappeared
likely to be acceptable. The technique adjusted the local radius of curvature
proportional to the negative of the difference between the predicted value and
the value for the trial curve. That is, if the predicted local radius of curva-
ture was larger than that of the trial curve, the local value was lowered in the
succeeding iteration. Sample computations following such a procedure are il-
lustrated in Fig. 4. Figure 4b also shows the variation of a and the position
of the line vortex corresponding to iteration (B) of Fig. 4a. These results
merely showthe trends in the computations and do not necessarily reflect the
final values of the solution. It might be mentioned that trajectories have
been computedappearing to agree muchmore closely with the trial values, but
differing more in the local R(s) variation than those shown in Fig. 4.

DISCUSSION

The numerical formulation of the problem adopted appears to be accurate
and acceptable. Further alterations of the iteration procedure may be desirable,
although the starting curves chosen for the computations were not close to the
solution positions, and better initial estimates should improve the performance
of the iteration technique.

Extensions of the analysis to yield a more complete description of the
problem center on improving the characterization of the jet. Given the aero-
dynamic field around the jet from the simple model, it is possible to more
accurately determine the entrained momentumflux, pressure variations around
the surface of the jet, and so forth_ The effects of the wake of the jet
probably should also be added (ref. 1), accounting for a shedding of streamwise
vorticity from the jet and changes in the strengths of the vortices associated
with the jet proper.
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Further computations should indicate what degree of approximation of the
problem is necessary for aerodynamic purposes.
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ANALYTIC DESCRIPTION OF JET-WAKE CROSS SECTIONS FOR

A J_ NORMAL TO A SUBSONIC FREE STREAM

By Richard J. Margason

NASA Langley Research Center

SUMMARY

An analytlc description is given of Jet-wake cross sections for a jet

exiting normal to the free stream. The results indicate that a reasonable

description can be obtained for the cross section. However, a complete descrip-

tion of the Jet wake and associated phenomena requires a more complete model of

the jet wake than that presented herein.

INTRODUCTION

The analytic description of a Jet in a cross flow is difficult because of

the complex nature of the flow in the vicinity of the jet. The primary fea-

tures of the jet are the solid fluid core near the exit, the rollup by the wake

into a pair of trailing vortices, and entrainment of free-stream flow into the

jet. This entrainment can be considered in two parts: the fluid induced into

the wake region by the swirling flow induced by the vortex pair, and the fluid

entrained by viscous mixing on the periphery of the Jet wake. The jet influ-

ences the free-stream flow in several ways. For example, near the jet exit the

solid fluid core blocks the free-stream flow and causes a stagnation point ahead

of the Jet. Beyond the stagnation point, the free stream flows around the jet

and separates from the downstream slde of the jet efflux and, thus, causes a

separated wake region.

SYMBOLS

D

N

rj

S

V

vj

V

Jet diameter

number of vortex filaments used to describe a Jet cross section

Jet radius

path-element vector

velocity vector

Jet velocity

free-streamveloclty
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v/vj

X,Y

z

P

1-'n

O

effective velocity ratio

Cartesian coordinates

complex plane coordinate

circulation strength

circulation strength of the nth vortex filament, where

cylindrical coordinate

natural jet coordinate along the axis of the jet

complex velocity potential

n = I_2,...N

CALCULATION OF THE ROLLUP IN TH_ JET WAKE

Information from reference i by Chang-Lu was used in an effort to describe

the roll_ of the jet wake into a pair of vortices. _e cross section of the

jet wake _ the exit plane is described by fil_ents of vorticity as shown in

fibre i. A discrete number of filaments parallel to the direction of the jet

velocity are spaced aro_d the jet exit. _e circulation strength of these

vortex filaments is defined by the complex potential f_ction which describes

flow about a circular cylinder pe_endicular to streaming flow:

The total derivative of this complex potential f_ction yields the velocity

vector induced by the presence of the cylinder:

-_ de
V =

dz

Then_ this derivative is integrated along a path to determine the circulation

strength of the discrete vortex filaments, which is given as

f -r--

Integration over a sector of the circle gives the circulation strength for a
single vortex filament as

_--sin_(n - i1rn = 4V_rj sin N
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These discrete vortex filaments are used to determine the change in the

cross section of the jet as the flow passes downstream. This is done by a
series of computations where the cross-section deformation is treated in two

dimensions. Each of the vortex filaments is influenced for a small increment

of time by the other filaments in the cross section. Since these filaments lie

on a free surface, they must move to assume a new position where the net force

induced by the other filaments is zero. This process is repeated many times as

the flow moves away from the jet exit. As a result, the wake cross section

changes shape. This change is indicated in figure 2 for a wake with 12 vortex

filaments. The circular cross section in section A flattens on the downstream

face to form the cross _n_-^_^ ___a _+_n_.........B. Then.. farther down the wake

at section C, the characteristic kidney shape is formed. In section D and

farther downstream, this evolves toward a very tightly wound pair of vortices.

To form the surface of the wake boundary, a three-dimensional lattice of vor-

ticity is constructed around the jet path. The jet path has been obtained from

an empirical equation (ref. 2). This series of computations represents one

feature of the jet, the rollup into a pair of vortices.

The precise form obtained analytically for this deformation is shown in

figu__e 3_ where the cross sections are described by 96 vortex filaments. The

cross sections are presented at one-diameter increments along t_e jet axis.

They represent the rollup of the wake cross section where the effective velocity

ratio is 0.25. Previous attempts at using this procedure to describe the rollup

have failed to form the spiral pattern because of truncation error.

The accuracy of this representation is indicated by figure 4. This photo-

graph shows the cross section of a jet wake in a water tunnel at a point

approximately 6 nozzle diameters along the jet axis measured downstream from
the nozzle exit.

FLOW INDUCED BY THE JET WAKE

The usefulness of this three-dimensional vortex-lattice model of the jet

wake will be determined by using it to estimate the pressure distribution

induced on a plane flush with the jet exit. A simplified version of this model

is represented by potential flow around a solid circular cylinder. (See fig. 5.)

Ahead of the jet, there are positive pressures which are a result of the blockage

of flow by the clinder; on the sides, there are negative pressures caused by the

accelerating flow around the cylinder. Since the potential-flow model does not

represent flow separation, there are positive pressures at the rear of the jet
exit.

If this circular cylinder is allowed to deform along the jet path and roll

up into a pair of vortices as shown earlier, the pressure distribution presented

in figure 6 is obtained; there is little change from the pressure distribution

shown in figure 5. Poor correlation was obtained between the data of figure 6

and those of figure 7, which are experimental results from reference 3. It

should be noted that the present representation describes the rollup of wake

caused by the external free stream and the blockage caused by the presence of
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the jet. Comparison with experimental results shows the present representation

of the jet wake to be incomplete.

CONCLUDING REMARKS

The results presented indicate that a reasonable description of the cross

section of a jet wake normal to a free stream can be obtained by an analytic

procedure. However, a complete description of the jet wake and associated flow

phenomena will require a more complete model of the jet wake than that presented

herein.
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CROSS WIND EFFECTS ON TRAJECTORY AND CROSS

SECTIONS OF TURBULENT JETS

By Gerhard W. Braun and

Jack D. McAllister

University of Tennessee Space Institute

SUMMARY

Results in two loosely connected research areas concerning
jets in cross flow are reported. An analysis of specific mass-

momentum flux data showed that the entrained mass flux, Qe,
carries the undisturbed cross flow velocity V_ into the jet in

such a way that it adds the momentum QeV _ to the jet flow. This
relation permits a calculation of the jet trajectory, when the

mass entrainment is given, or a calculation of the entrainment,
when the trajectory is known.

If specific entrainment data are not known, the jet trajectory
can be calculated by means of the assumption that the sidewise

spreading rate of the jet and the nondimensionalized distribution

of the excess velocity are the same as known from submerged jets.

Closed form solutions are obtained for simple cases. Measured

trajectories are curve fitted by adjusting a free spreading rate
parameter.

The second part deals with the roll-up process of a jet in
cross flow. Computer results obtained from potential flow cal-

culations are shown for single and double jets with circular or
elliptic exit nozzles.

I NTRODUCTI ON

The theory of the submerged turbulent jet of circular cross

section, i.e., the jet issuing into still air is, after Tollmien's
pioneering work (1), sufficiently well known. The flow pattern

of the jet in cross flow, however, is much more complex, and it
is unlikely that, in the near future, its theory would be brought
up to the level of knowledge on the submerged jet.

On the other hand there exist empirically derived formulae
for the jet trajectory in cross flow. Such formulae have been
published by Heyson (2), Monical (3),Wooler (4), and others. But
these formulae tell too little about the physical reasonsJor the
jet curvature.
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More insight is provided by the jet theories which explain

the jet bending as the effect of a drag force acting along the
jet. Abramovich's (5) formula (12.160) is of this type. If

one analyzes what drag coefficients would be needed, then one

finds values up to 35 which is about twenty times the value one

would expect.

Crowe and Riesebieter (6) recognized this difficulty and

tried to eliminate it by prescribing a drag coefficient of 1.5

and making the necessary adjustment by selecting the needed

frontal area of the jet. The second author of this paper found

(7) that one needs a jet width of up to three times the width

one would estimate from experimental observations.

Because of these difficulties it was tried to derive the

trajectory equation of a jet in cross flow on the basis of the

momentum theorem. The problem was solved by the second author

in his thesis (7) to which the bulk of this paper is devoted.

As an appendix some potential flow aspects of the roll-up

process of jets are added.

For the sake of clarity it is here mentioned that the fol-

lowing analysis is confined to the similarity region of the jet

(Fig. i), where the unmixed ("potential") core has disappeared

and the transition to pure free turbulence has been established.

The effects of the jet in front of this similarity region are

taken care of by introducing an apparent origin of the jet.

SYMBOLS

a

Ao

%

do

h

%
kr = Qo

K(R) =_h

M

Q

r

location of the apparent jet source measured in orifice diameters

upstream of the orifice

jet exit area

area of the jet projection onto the x-y plane, see figures 7 and 8

diameter at jet exit

width of the jet in y direction

ratio of jet mass flux at potential core end to value at jet exit

spread rate of the jet width

jet momentum flux

jet mass flux

polar coordinate in jet cross plane
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R Vj

U

Vc

x,y_z

8

e

P

cp

Subscripts :

J

n

o

r

x

z

1
2

characteristic ratio for jet in cross flow defined by equation (18)

local flow velocity

8Q

Cartesian coordinate system, see figure 7

I8K(R)
: ___)si-_;o see equation (251

nondimensional radial distance_ r/r_

angle between local jet velocity and free stream velocity

distance along curved center line of jet

density

angle of polar coordinates in cross-sectional plane

value at center line of jet

pertaining to the jet

center of jet

value at jet exit

reference station at end of "potential core"

component parallel to x-axis

component parallel to z-axis

value corresponding to a velocity excess one-half the maximum value

free stream value

MOMENTUM THEORY OF JET TRAJECTORY

Analysis of Mass-Momentum Flux Data

The first goal was to establish assumptions about the jet
momentum flux and the mechanism of interaction between the jet
and the external flow.

For this purpose mass-momentum flux data published by Keller
and Baines (ref. 8) were analyzed. These values are reproduced
in figure 2. They were obtained by integration of measured
velocity profiles using as the jet boundary the surface where the
velocity excess is one-tenth the maximum value at a given axial
distance.
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Figure 2 illustrates that the momentum flux increases lin-
early with mass flux for each jet to free stream velocity ratio.
Thus a constant velocity V c _ _M/_Q characterizes for each ve-
locity ratio the axial momentum per unit mass being entrained in-
to the jet. To obtain quantitative values for this characterist_

velocity, V c, the following assumptions were introduced•

• The linear relation between mass and momentum fluxes

is also valid for the initial mixing region between
the orifice and the end of the potential core.

. The reference mass flux values occurring at the potential
core end of a jet in cross flow may be reasonably es-
timated from data measured for the submerged jet.

• The velocity is constant over the orifice cross section.

(Confirmed by private communication from Professor
Keffer.)

4. The jet and external stream have the same density.

The mass-momentum flux data of fig. 2 may be expressed in

the form of equation (i) with F representing the experimental
slope of the linear relationship•

M/M r = 1.0 + F(Q/Q r - 1.0). (i)

From fig. 2 one reads the values for F: R I 4 I 6 I 8F .412 .304 .269

Assumption (1) provides a second expression between the mass and
momentum fluxes:

M = M° + Vc(Q - Qo ). (2)

A relation for the characteristic velocity, Vc, is then obtained
by combining equations (1) and (2)

Mr
V = F -- (3)

C
Qr

The desired expression for the characteristic velocity is found
in the form of equation (6) after introducing the abbreviations

k r _ Qr/Q ° (4)

vj _ Mo/Q o , Vj _ R V (5)

R

Vc/V _ = (6)
kr/F - (k r - 1)
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According to assumption(2) the mass flow ratio, kr, does not de-
pend upon V_ so that for it the value k r = 2.2 based upon measure-
ments for a submerged jet (given by Albertson_et aL (ref. 9_
can be substituted. Equation (6) then gives the values 0.97,

0.99, and 1.14 for the ratio of the characteristic to free stream
velocity.

This result suggests that, to the first approximation, mass
entrained into the jet brings with it the associated free stream
momentum. Further it suggests that deflection of the total jet
momentum flux is more adequately treated as an effect of momentum
entrainment than as the result of pressure forces normal to the

jet.

Fearn took the relation V c = V_ for granted and
used it already in early 1988.

Approximate Integral Analysis

In fig. 3 the nondimensional velocity excess above the free
stream value published in ref. 8 is plotted versus the non-
dimensional lateral coordinate. The nondimensionalizing distance

r_ is the radius at which the velocity excess is half the maximum
v_lue. The curve is universal, i.e., does not depend on R or _.

Schlichting's (ref. I0)expression

U - V 1
-- -- = f (n) = (7)

Um V i1 + (_- 1) 2]2

obtained for the submerged axially symmetric jet fits well this
curve.

The approximation for the jet axial velocity distribution is

completed by using measured values of the decay in center line

velocity U as oublished in ref. 8 together with a suitable ex-

pression fo_ the angular and axial variations in r½. The latter
was determined by approximating the jet cross sectlon with an

ellipse with the eccentricity k and the spread rate _, giving
l

r½ = a - cos _. (8)

The factors k and a have to be determined experimentally.

The obtained axial variations in mass and momentum flux are

presented as dashed lines in figs. 4 and 5 for velocity ratios of
4 and 8. Note that the mass entrainment is materially increased

when the free stream velocity becomes comparable with the jet
velocity. The result for the submerged jet was obtained through
the limit process of R-_o with k_0 and a taken from submerged jet
data of Fgrthmann (ref. 11). The limit value is in excellent
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agreement with the direct measurements of Ricou and Spalding
(ref. 12) and data analysis of Albertson (ref. 9), both works in-
dicating Q/Qo = 0.32 _/d o for submerged jet.

Applying the same limit process to the momentum flux ex-
pression with the conventional assumption of constant momentum
flux when the external medium is at rest yields the correct ex-
pression for the center line velocity decay even to the numerical

constant_ U - V

G(_) : m _ _ 6.3 for submerged jet. (9)

Vj - V _/d o

The analysis of the following section will show to what ex-
tent the approximate integral analysis is in agreement with the
principle that the entrained mass carries its free stream momentum
into the jet.

Relation of Jet Trajectory to Mass Flux

The principle of momentum entrainment may also be applied to

link the jet center line inclination to the mass flux at a specif-
ic axial distance* The analysis is again based upon three

assumptions:

I. The jet trajectory has the direction of the jet momentum
flux vector.

• The momentum flux at a station _ of the trajectory is
the vector sum of the momentum flux through the orifice
and the momentum of fluid entrained along the trajec-
tory up to station _.

3. The entrained fluid momentum is the product of the un-
disturbed cross flow velocity and the entrained mass.

Using the coordinate system of fig. 6, the momentum flux
has the components:

Mx = M° sin eo, (lO)

Mz = M° cos 00 + V (Q - Qo ). (11)

Hence the following relationship exists between the trajec-
tory angle @ and the mass flux:

M V_Q° ( Q 0
cot @ = _zz = cot @o + -- - , (12)

Mx M° sin @o Qo

Fearn also used this principle in ref. 13.
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Solving for the mass flux ratio gives

Q/Qo = 1 + R sin 8 0 (cot 9 - cot eo), (13)

where R _ Vj/V_.

Mass flux values based upon equation 13 and jet trajectory
data of ref. 8 are compared in fig. 4 with the corresponding
results of integral analysis. The good agreement not only sub-
stantiates the momentum entrainment hypothesis but also suggests
that mass entrainment for a jet in cross flow may be readily
obtained from center line trajectory data via equation (13).

A simple relationship for the momentum flux may also be ob-
tained by using the fact that the x component is constant

sin 8
M/M - o (14)

o sin @

Equation (14) is compared with momentum flux results based

upon the integral analysis in fig. 5.

The comparison is satisfactory especially at the more down-
stream positions where the axial velocity should be quite close
to the assumed similarity profile.

Development of the Trajectory Equations

At first thought the back-flow produced by the vortex street,
observed in the wake of the jet, seems to eliminate the possi-

bility that the entrained masses carry in the average the full
cross flow velocity. Platten and Keffer (ref. 14) developed
about simultaneously with the reported work a jet entrainment

theory which has the contribution of the shed vortices as a
specific feature. The following pages will show that the as-

sumption of a wake with zero velocity can serve the same purpose.

The analysis of a circular jet entering at an angle e o to a
uniform stream is initiated by considering the balance of mom-
entum flux for the control volume presented in fig. 7. A 3 is

part of a rigid wall through which the jet exhausts. The shear
force acting on A 3 is assumed to be negligible in comparison to

the momentum terms. A t is the surface normal to the jet trajec-
tory at the general axlal distance, 6. The momentum flux in the
x and z directions are established under the following conditions:

, The velocity vectors in each jet cross section are

parallel to the jet trajectory.

. Average pressure differences between corresponding sur-
faces of the control volume are relatively small and
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may be neglected in comparison to the momentum terms.

° The flow through the plane A¢ can be divided in three
parts:

a) A jet region, A_, bounded by the jet-external
stream interface.

b) A wake region in the "shadow of the jet" with
essentially zero velocity.

c) An exterior region comprising the remainder of A t
and having the undisturbed free stream velocity.

Using these assumptions the x momentum equation is

M sin e = sin @ f pU2dA, (15)
o o A.

J

which is a mathematical statement that the component of jet mo-
mentum normal to the free stream is invariant.

The z momentum equation has the form

0 A.
J

where A is the projection of the jet onto the x-y plane, see
fig. 7. p

This expression is further simplified to equation (17) by
using equation (15) and slight rearrangement.

pJ2 A
cot e = d_z = cot e + P (17)

dx o M sin e
O O

Equation (17) suggests that the effective velocity ratio be de-
fined in terms of the orifice momentum flux as given by

f pjV dA
A M

R2 = o o (18)

AoPS_ AoP_V_

Equation (17) is thus expressible in terms of the jet geometry
and the velocity ratio, R:

A
d__z = cot @ + p 1 (19)
dx o A R2 sin @

O O
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This trajectory equation may be solved as soon as Ap is expressed
in terms of x or z.

By generalizing Vakhlamov's (ref. 15), approach, the projected

et cross section AD (fig. 8) was built-up of a parabolicallylaring out stem of-width, h, and a head in form of half an
ellipse. The effective jet width is taken to be a linear function

of axial distance with an empirical proportionality parameter,
K(R) called the spreading factor and a set-back factor, a, which

corrects for the fact that the apparent origin is located a
orifice diameters upstream of the orifice. This gives

h = (2ad o + _) K(R) (20)

Evaluation of tests gave for a jet entering normal to the
free stream

_h
z K(R) _ 1.0, for 4 ! R ! 8,

and lim _h
_ 0.32.

O_

for a submerged jet.

(21)

(22)

Solution of the Trajectory Equation

There is no difficulty in solving the trajectory equation
(19) on a computer. For basic investigations, however, an

analytical solution is desired.

In order to make such solutions easier_the elliptic head of
x

the jet shadow Ap is neglected so that Ap =f h dx One has

then to substitute in equation (19) 0

A x

p _ 4 K(R) / (2ad ° + _) dx (23)
A _ d-_-0
O O

fdzl2where % = 1 + _xl dx (24)

Equation (24) causes certain analytical difficulties. However,

if one plots the nondimensionalized penetration distance X/doR
versus the nondimensionalized trajectory arc length %/doR then
one sees that a good approximation of the arc length can be
obtained by assuming

= x for __x_x_< I. Region A
dR i
O
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= 2x for -- _ 1 Region B
dR

O

Integration gives in Region A the trajectory equation

Z--X cot @o + 52 I_R X2 + -!-iX3112 (25)

where Z z x 52 8 K(R)= ; X = ; =
Rd Rd 7r sin

O O O

For the case a = o and K = --3v equation (25) is identical with
8

Heyson's (ref. 2) empirically found formula

X 3
Z = X cot _ + (26)

o 4 sin e
o

For Region B, i.e., X > XI_ one finds

!

Z = (Z1 + £) cosh[5(X-Xl) ] + 5-1 Z 1 sinh[5(X-Xl)]_a/R
R

Z 1 and Z_ are the nondimensionalized z-coordinate and its

derivative at the matching point of Region A and Region B.

(27)

If one would consider a jet issuing perpendicular to the

cross flow and if one would expand the validity of (27) down to
the jet orifice, i.e., if one would assume X 1 = Z 1 = Z 1 = 0_
then (27) would be simplified to

Z = a [cosh (SX) -1] (28)
R

This formula is similar to an empirical relation given by Wooler
in ref. 4.

Correlation of Computed Trajectories with Measurements

The primary substantiation for the simplifying assumptions
used in the development of the trajectory equations is the abil-
ity to match measured trajectories over a wide range of R using
values of K(R) and the apparent origin set-back distance, a
that are in agreement with experimental observations. The re-
sults of such matchings are presented in this Chapter using
previously published data (16), (17), (18), as well as measure-

ments obtained during the present investigation.

It was found that for all trajectories the same value a=0.8
may be used for the apparent origin set-back distance. The
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coefficient a/2R in equation (25) provides for the observed chan_
in trajectory shape from quadratic to cube as R increases.

Figure 9 illustrates the close degree to which the air jet tra-
jectories of references 16, 17, and 18 may be matched. Values
of the spread rate parameter, K(R), used in these computations
are plotted in fig. i0. It is important to note the close agree-
ment between the values required to match measured trajectories
and the independent experimental values based upon a ten per-
cent velocity excess (equations (21) and (229. This is a
strong substantiation for the assumptions used in developing the

trajectory equation.

The original thesis presents also matched water jet trajec-
tories which show the same good agreement. The thesis further-
more investigates the effect of a plate from which the jet issues.

Finally, the effect of having the jet enter at angles other
than normal to the external stream was investigated. Trajec-
tories measured for entry about thirty degrees each way from the
normal are shown in fig. !I.

The numerical predictions of fig. ii were accomplished with
the K(R) and a used to match for the normal jet entry. Note

that, as @o decreases, the jet turns more slowly toward the
free stream indicating decreased mixing and hence the desirabili_

of a smaller value for K(R). However, for @o between sixty and
one hundred twenty degrees the predictions presented are con-
sidered to be quite satisfactory.

INVESTIGATION OF JET ROLL-UP DUE TO CROSS FLOW

A typical and very conspicuous phenomenon of the jet in
cross flow is the formation of the already mentioned vortex

system. This system consists of two types of vortices. One
type stays within the jet and causes it to roll-up into two
vortices; the other vortex system separates from the jet and forms
a type of yon Karman vortex street.

Chang (ref. 19) has investigated the roll-up process on the
basis of two-dimensional potential flow theory. She represents
the deformation which takes place on a jet slice while it moves

down the jet by assuming that it would be identical with the de-
formation a cylindrical jet would undergo in two-dimensional
cross flow while time goes on. Mrs. Chang's investigations are

based on potential flow theory_ but her results show such a
striking similarity to the actual phenomenon that it was decided

to continue her investigation. This was done by Mr. Stephen M.
Soukup (ref. 20), who included in his analysis also jets with
elliptical outlets and added investigations on couples of jets
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in side by side and tandem arrangements.

The analytical approach is as follows: The two-dimensional

flow around the jet outlet configuration is established by dis-
tributing a vortex sheet of such strength around the openings
that it would become a stream line. For computation purposes

the continuous vortex sheet is replaced by 32 discrete vortices_

and the velocity components, v x and Vy, imparted to each vortex
by the rest of the vortices,ar e calculated. Selecting a time

interval At and permitting the vortices to move freel_ the dis-
placement of each vortex in the direction of the two coordinate
axes is given by Ax = At.v x and Ay = At.v_ . The vortex dis-
placements are different for the differen_ vortices and represent
the deformation of the jet cross section. Two examples of cross

section deformations are shown in fig. 12. The upper row is for
a circular exit nozzle and the lower row for an elliptical exit
nozzle with the numerical eccentricity E = 0.80 and the same
area as the circle.

The calculations for single jets cover elliptical nozzles

with the numerical eccentricities of 0.0 0.2-0.4 0.6 0.89 and 0.95.
For a more compressed presentation the deformed Icrosls sections

were stacked as it is shown in fig_ 13 and 14. The side by side
configurations consisted of elliptical jets with the following
eccentricities, e:

right jet I e = 0.00 ] 0.0 0.95left jet e = 0.00 0.95 0.95

Circle and ellipse have the same outlet cross section area of
Ao = 7. The distance between the centers of the two cross
sections was in all cases 3 units.

Finally the following two configurations of jets in tandem
arrangement were investigated:

Front jet I circle l circleRear jet circle ellipse e = 0.95

The results of the first case are shown in fig. 14.

The calculations reveal that the jets of elliptic cross
section roll-up slower than the circular jets. For side by side
configurations the cross section deformation is much larger on
the inside than on the outside of the jets. In tandem arrange-
ment the rear jet is pulled into the front jet.

Unfortunately no relation between the time sequence of the
deformation of the hypothetical two-dimensional jets and the
deformation of the actual jets in space has been found. It is
obvious that the potential flow theory cannot describe the mix-

ing phenomenon of the jet. However, it is hoped, that Soukup's
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calculations may help in finding the effect of the cross flow on

the enlargement of the jet surface which obviously is important
for the entrainment process.

CONCLUDING REMARKS

The presented studies lead to the following conclusions:

, The deflection of a turbulent jet in cross flow is

primarily due to a mixing process which entrains free

stream momentum into the jet. This process permits

determination of the jet mass flux from the more easily
measured trajectory angle.

.

.

Momentum mixing considerations allow jet trajectory

predictions over a wide range of velocity ratios, R,

and jet entry angles, e o.

These favorable results should not raise the hope that
refinements of this approach, like a more careful

representation of the jet shadow area, Ap, could produce
an essential improvement of the accuracy of the results.

. The momentum theory is confined to cases where flow

restrictions are of minor importance. If one wants

to include ground or wall effects one would have to
introduce new features like vortices which have a

far-field effect and are subject to a feedback from
flow obstructions.

, A challenging extension is seen in including the vortex

system especially the shed vortices in the mathematical

model of the jet in cross flow.
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A GENERAL JET EFFLUX SIMULATION MODEL

By Fred L. Heltsley and Richard A. Kroeger

ARO, Inc.

SUMMARY

The complex flow fields induced by V/STOL aircraft in transition flight

give rise to an interest in the problem of a jet issuing into a crossflowing

stream. The greatest contributor to the induced flow is the roll up and ensuing

vorticity of the viscous jet as it penetrates the free stream. This paper

describes recent work done both to understand the forces of interaction of the

jet and the field and to present a satisfactory mathematical modeling technique

which will be useful in aircraft engineering. The results suggest a need for

extensive experimental and analytical studies of the jet in a cross flow.

INTRODUCTION

Classical air vehicles produce an exhaust jet efflux which is oriented

nearly parallel to the vehicle flight path. The literature contains many

approaches to the solution of the flow resulting from the interaction of the

jet and the surrounding field. For analytical simplicity_ the flow may be con-

sidered in three parts:

i. The internal jet flow

2. The flow external to the jet

3. The boundary of interaction of these fields

Regions one and three require viscous modeling; however, upon application of

suitable boundary conditions region two may be effectively represented by

singular solutions to Laplace's equation.

V/STOL lift systems in transition flight offer an additional complication

in analytical modeling. This is known as the "jet in a crosswind" problem.

The three regions of interest are shown in figure i. The purpose of this paper

is to introduce a semiempirical method for providing solutions to region number

two, which is of importance in the performance, stability and control of the

air vehicle. Special emphasis is placed on generality and engineering

simplicity.

SYMBOLS

A area

b span of vortex element

d jet diameter
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du/dn

e

Y

g

S

V

X_Y_Z

i

la

o

T

P

rate of change of velocity with respect to a surface normal

entrainment per diameter

force acting on jet

momentum flux

distance along jet trajectory

velocity

jet coordinates in diameters

unit vector

viscosity

density

shearing stress

angle between vortex element and impinging velocity

vortex filament strength

Subscripts:

e

i

J

n

P

t

oo

o

1,2,3,4,5

exit conditions

entry conditions

referring to jet

normal component

referring to potential solution

axial component

referring to remote stream

initial condition

order of shed vorticity

PHYSICS OF THE JET

The high degree of complexity of the flow created by a jet issuing normal

to a free stream has led to a search for suitable variables for describing its
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performance. For example, variables such as jet temperature_ exhaust distor-

tion_ turbulence and total pressure distribution, Mach number and Reynolds

number may be used. On the other hand_ these variables may be implied in an

empirical set such as entrainment_ wake separation, trailing sheet roll up_

trajectory and cross-section geometry. Once a sufficient amount of empirical

evidence has been compiled_ these characteristics may further be condensed to

the following set:

i. Jet to free-stream velocity ratio

2. G.... +_ic distortion due to

Vehicle interference

Ground interference

Multiple jet interaction.

Some variables not expressed in this arrangement have disappeared as a result

of compromise for simplicity or are implicit in the mathematical formulation.

As a starting point_ the simple free jet in a cross flow was studied. The

trajectory (ref. i) was approximated by

x=j  2(z)3 (1)

where X,Z are the jet coordinates nondimensionalized by diameter from fig-

ure i and V_/V_ is the ratio of the free stream to jet velocity ratio. The
jet entrainmehtawas found by integration of experimental data from reference i

to be

e = 0.19 per diameter (2)

which is the decimal rate of mass flow increase along a specified jet surface

per exit diameter. Due to the lack of experimental data_ the accuracy or vari-

ation of this parameter with V_/Vj was not known.

Figure 2 shows the distortion of the total pressure profile along the path

of the jet. Two major counterrotating vortices appear to be formed which

increase in strength as the jet grows. These have been observed in many exper-

imental studies and are of great importance to the flow.

This has been a cursory description of the jet in light of its extreme com-

plexity. It remains to be shown that such naive observations can be useful in

defining the flow region external to the jet.

VORTEX SINGULARITY MODELING

A good approximation to the flow in the region where viscous effects are

small may be made by the potential theory. This was applied by direct super-

position of singular solution to Laplace's equation with the appropriate boundary
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conditions. Vortex singularities are very useful for three-dimensional lifting

bodies. Other types of singularities including doublets, bicirculation, sources

and sinks may be more appropriate for particular applications. Though some com-

promise in numerical simplicity was paid, vortex singularities were used for

the modeling for total system simplicity.

Figure 3 shows the application of the vortex lattice method to a simple

fan-in-wing configuration. Vortex singularities were used throughout with the

following boundary conditions:

i. V_ = uniform

2. The flow component normal to the wing surface vanishes

3. The flow into the inlet = Vj

4. The flow normal to the jet efflux simulation tube surface must

compensate for entrainment.

Figure 4 shows an isometric view of the simulation of a propeller with its

axis normal to the free stream. Some calculated streamlines are shown. The

flow asymmetry at the prop inlet was induced by variation of the inlet flow

between the individual boundary control points.

Figure 5 shows how the jet roll-up was simulated by the trailing vortex

elements. Two cross sections are shown for comparison of the model flexibility.

Note that the downstream cross section (B-B) has grown in size and the number

of trailing vortices used in its composition have increased. Figure 6 shows

how these vortices were dispatched. The similarity with the low aspect ratio

lifting surface analogy was noted. As the jet axis is traversed away from the

exhaust nozzle, the number of trailing elements may be seen to continuously
increase.

INTERACTION BETWEEN THE JET AND THE SURROUNDING FLUID

As the jet issues into the crossfiowing stream, forces of action and

reaction develop. The jet is deflected and distorted by the stream with a set

of forces whose reaction causes an influence to be felt over the entire field.

Figures i and 2 show the two primary results of these forces. It seems reason-

able that if the surrounding fluid acts to form such distortions, and if that

field may also be represented by singular solutions to Laplace's equation, then

vortex elements may be employed to simulate the forcing elements in that field.

In the model described here vortices were used for simulating wake block-

age, entrainment and the trailing sheet. The latter was shown to be the greatest

contributor to the flow distortion behind the jet. As in the case of wing theory,

the strength of the trailing sheet was calculated by application of the correct

boundary conditions. However, the presence of the viscous jet made the corre-

sponding boundary difficult to define.
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The objective of this section is to present an analytical model for the jet

which will provide a solution to the field away from the jet. In effect, this

is the inverse of the jet trajectory problem as the kinematics of the jet are

a priori empirically specified. The vortex model described in the previous

section was applied to the jet in a cross-wind problem. The trailing system

was arranged as in figure 6. The results are shown in figure 7. Though the

trailing system was very roughly approximated by the straight vortex lines, the

experimental data shown in the plane of symmetry were matched quite nicely.

The importance of the trailing system can be seen by comparison with figure 8

wherein the same jet was simulated by entrainment and blockage only.

The boundary condition sought in the modeling of the trailing vortex sys-

tem was that no flow could cross the defined sheet. A one pass semiempirical

computer solution was found which simultaneously solved all the vortex strengths

as a consequence of the geometry and the boundary conditions. The strengths of

the individual vortices in the trailing system were distributed along the jet

axis as shown in figure 9. A cut was taken across the sheet, normal to the

filaments, and the total wake vorticity on one side of the jet was obtained.

This strength reflects the forces acting on the fluid field. A plot of the

trailing element strength is shown in figure lO.

It must be pointed out that the vortex strengths calculated in this exer-

cise are effective strengths and would correspond to the viscous case only if

the latter were lO0 percent effective. It would be expected that if the actual

vorticity could be experimentally measured it would appear higher than those

which the mathematics requires in the simulation model. This argument must

preclude the existence of a complex wake system with additional counterrotating

filaments.

As a means of further understanding the meaning of the results of the ana-

lytical modeling, a more in-depth look was taken at the development of the

trailing system. This approach required a detailed experimental knowledge of

the internal jet flow. Since such data were nonexistent, a particular jet

boundary was defined and information was extrapolated from the experiments of

Shandorov. The goal was to compute, for comparison, the circulation strength

from the calculated induced forces of reaction between the jet and the sur-

rounding fluid.

Figure ii shows the jet induced force F which was to be found. The com-

ponent F n is normal to the jet axis while Ft is tangential. The momentum

flux rate along the jet is

: / pv2 Y (5)

where p is the fluid density, A is the jet cross-sectional area, V is the

local jet velocity component and T is a unit vector in the direction of local

flow. If the momentum flux was known along the jet, the interaction force

could be easily calculated. In finite element form, the force acting on a jet

control volume element is given by
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(4)

The subscripts i and e denote entry and exit, respectively. The control

volume was defined as an axial element of the jet whose extremes are planes

normal to the jet axis. The peripheral surface coincided with the locus of the

velocity profile where the shear stresses become sufficiently small to divide

the jet from the field which was called potential. This roughly matched the

outer boundary of the profiles shown in figure 2. The need becomes apparent

for the definition of a maximum allowable shearing stress

du

•p = (5)

which would not invalidate a potential solution. The derivative in equation (5)

is the rate of change of velocity with respect to a surface normal.

The next step was to calculate the strength of the bound vortices which

would produce the force described in equation (4). From elementary three-

dimensional lifting theory the force on a bound vortex is given by

: pV X _"o (6)

where P is the strength and b is the span of the lifting element. Next,

the force on the jet was assumed equal to that induced by a group of distributed

bound vortices, each with a pair of trailing elements. This arrangement is

shown in figure 9. Their strengths were found by equating equations (4) and (6).
Thus,

= F T (7)
pVb sin

Since the jet velocity vector imposed on _ was normal to the bound element,

sin _ was taken as unity and the scalar magnitude of vorticity written

p_ F (8)
pVb

The rationale for using the jet velocity in this equation was that the bound

element was assumed to span the jet. In the potential model, the average inter-

nal jet flow velocity could be matched with that in the real jet. As each vor-

tex strength was determined by the induced velocity over the bound filament_

the jet velocity fulfilled the requirement.
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Upon breaking the jet into longitudinal control volumes, equation (8) was

calculated and integrated along the trajectory s for the total sheet strength.

The propeller model introduced earlier was used as an example of the appli-

cation of this technique. This example was chosen at the risk of making the

foregoing developments appear somewhat precocious in light of the experimental

data at hand.

First_ the jet characteristics were calculated using the data from refer-

ence 2. Some guess work was necessary to arrive at the integrals of the flow.

Figure i2 shows the axial momentum distribution. It is interestir_ to note

that the momentum starts to decrease quite rapidly upon exit to the free stream

and then begins to increase. Though the validity of the data application was

somewhat in question_ it is felt that the resulting flux could be reasonable.

The mechanism for such distortions was felt to be the trailing sheet rapidly

rolling up at the knee of the trajectory causing some of the axial momentum to

be changed to rotational momentum. Later_ the rotational componenfl is appar-

ently reintroduced in the axial direction as the vortices are bent.

By applying equation (4) to this data_ figure 13 was obtained. The force

vectors shown are the negative of those forces which act on the fluid field.

Figure 14 shows the strength of the trailing sheet calculated from the forces

on the fluid field. The width of the jet was taken from figure 2 to be the span
of the bound vortex filament.

The forces of interaction between the jet and the free stream have been

defined and a method of semiempirically evaluating the resulting remote poten-

tial flow field described. The interesting comparison between figures lO

and 14 shows the existence of a method for imposing vorticity in the trailing

jet wake either by direct potential calculations or by derivatives of experi-

mental data.

CONCLUSIONS ANDRECOMMENDATIONS

A semiempirical solution of the flow field induced by a jet in a crossflow

has been presented. It is yet somewhat premature to speculate on the quantita-

tive effectiveness of the technique even though figure 7 is very well matched

in the plane of symmetry.

The comparative trends of figures i0 and 14 show the logic of the simula-

tion to be in order. The shortcoming in the proof is in the limitation of

applications due to the availability of adequate experimental information.

Experiments should be conducted which define the jet boundary and momentum flux

so that the induced forces may be computed accurately. Flow-field information

away from the jet should be compiled to complete the verification of the semi-

empirical model. Finally, computer experimentation should be conducted to

define the boundary conditions which provide adequate analytical representation.
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CALCULATION OF JET INTERFERENCE EFFECTS ON V/STOL

AIRCRAFT BY A NONPLANAR POTENTIAL FLOW METHOD

By Paul E. Rubbert

The Boeing Company

SUMMARY

A method of calculating the flow field about V/STOL aircraft with a

potential flow model is reviewed with emphasis on the flow modeling require-

ments. Comparisons with experimental data are used to demonstrate the impor-
tance of proper Jet simulation. The dominant flow features associated with a

jet are reviewed and a theoretical model is proposed which recognizes these

features. An experimental program is suggested as a means for determining

various parameters appearing in the jet model.

INTROIXICTION

The calculation of jet interference effects on V/STOL aircraft is con-

siderably more complex than the classical treatment of interference in the

context of linearized lifting line or lifting surface theory based on small

disturbance concepts. Within the linearized small disturbance framework,

interference effects are interpreted in terms of superimposed downwash fields

which are akin to camber and angle-of-attack changes, and buoyancy effects

associated with the longitudinal interference velocity field. Such concepts

are based on the requirement that all disturbance velocities are small com-

pared with the freestream speed, and that the rate of variation of the inter-

ference velocity components within the confines of the airplane dimension re-

main small. Such is not the case for V/STOL aircraft, which typically operate

with high inlet inflow velocities, are subject to interference effects from

jet entrainment that vary widely over distances comparable to the aircraft

dimensions, and can operate at low forward speeds.

Thus, one is led to abandon the simplified small disturbance concepts
and adopt a less approximate scheme. The present paper describes such a
scheme (refs. 1 and 2) and focuses attention on its limitations and on the

particular problems associated with the efflux jet.
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SYMBOLS

entrainment coefficient (n = O, i, . . .)

drag coefficient

lift coefficient

pitching moment coefficient

pressure coefficient

chord

source strength

distsnce normal to a surface

unit vector normal to centerline in plane of trajectory curve

ve loc ity

distance

distance along the jet centerline

boundary in a potential flow model

portion of S consisting of the body surface

portion of S encompassing the jet

freestream speed

jet velocity ratio

Cartesian coordinates

angle of attack

span fraction

angle around the jet

doublet strength

singularity strength on panel with index J

velocity potential
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POTENTIAL FLOW CALCULATION METHOD

Modeling the Real Flow

The present scheme is based upon a capability for solving Laplace's

equation (irrotational incompressible flow) numerically in three dimensions

subject to arbitrary but properly posed boundary conditions; namely, Neumm_n,

Dirichlet or mixed boundary conditions, or variants thereof, on closed

boundaries whose spacial orientation is known. The initial task, when apply-

ing this method to a V/STOL problem, is to formulate a theoretical model of

the real flow that meets the above requirements while yet retaining the
essential features of the flow.

Figure I shows such a theoretical model that was developed (refs. i and

2) for a fan-in-wing aircraft. The assumptions inherent in its formulation

are as follows:

I. The outer flow is assumed to be incompressible and irrotational_

2. Boundary layer displacement effects are ignored.

3. Regions of separated flow are not simulated.

4. The spacial orientation of the trailing vortex sheet is prescribed

on the basis of a priori knowledge or experience.

5. The inflow distribution at the fan face must be prescribed.

. The trajectory and distribution of entrainment on surfaces en-

compassing the efflux jets must be prescribed. For this model

the entrainment was assumed to be zero.

7. The fuselage has been deleted for computational economy.

These assumptions serve to reduce the problem to manageable form. They

also impose certain limitations on the usefulness and domain of applicability

of the present calculation proce_ire as discussed in refs_ 1 and 2.

Numerical Procedure

The numerical solution procedure is based on the concept of source and

doublet (or vortex) distributions on the boundary surfaces. Distributions of

these singularities are approximated numerically by networks of small quadri-

lateral panels with the singularity strength of each panel set equal to an

arbitrary constant value, say Gj . Figure 2 shows the paneling used for the
model of Fig. 1. Certain portions have been omitted for clarity. This

numerical panel approximation reduces the problem to the determination of a

finite number of discrete singularity strengths, one for each panel.
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One point in each panel, the 'boundary point", is selected as the point

where the boundary conditions are to be satisfied. The requirement that the

boundary conditions be satisfied at all boundary points produces a system of

linear algebraic equations whose solution yields the desired values of _j .
From these the entire velocity and pressure field are calculated. References

1 and 2 contain a more detailed description of the procedure.

Experience has shown that one of the key points in using the method is

the selection of the singularity type (either source or doublet) to represent

the various surfaces. There are an infinite number of possible choices, and

the user must be careful to select a combination of source and doublet panels

that guarantees a unique solution. The basic concepts contained in Chapter

III of Lamb (ref. 3) are invaluable for providing the proper insight. Another

guideline for the choice of singularity distributions is that the panel ap-

proximation is limited accuracy-wise in a manner related to the change in

singularity strength from panel to panel (refs. 1 and 2). This limitation

imposes restrictions on both panel size and spacing and on the initial selec-

tion of singularity types. Experience with the numerical method together with

a firm understanding of the fundamentals of potential flow theory serve to

minimize the importance of these restrictions. These words of caution are

offered to prevent the uninitiated from becoming overly enamored at the out-

set by the apparent simplicity and power of the method. Successful applica-

tion of this method to new and different problems is strongly dependent on

the user's ability to model the real flow properly and to select the appro-

priate singularity and panel arrangements.

Initial Results and Problem Areas Uncovered

The present method, when properly used, provides a finely detailed solu-

tion of the inviscid model problem. The solution provides surface and flow

field pressures and velocities, and forces and moments obtained from inte-

grated surface pressures. Figure 3, which has been reproduced from ref. 2,

shows a comparison between the measured and calculated forces on the fan-in-

wing model described in Fig. 1. These were obtained with a moderate inlet

velocity ratio of VINFLOW/V _ = 1.667 and with the efflux jet vectored aft by

20 ° . No entrainment was assumed on the periphery of the jet boundary. The

various theoretical curves denote different assumed inflow distributions at

the fan face and demonstrate the sensitivity of the calculated forces to this

parameter. The differences between the curves arise primarily from the com-

puted internal force on the fan assembly calculated by a momentum balance

across the fan. This force is added to the integrated pressure force on the

external surfaces to give the total force acting on the configuration. The

calculated drag levels are lower than the measured values, which is to be

expected since the profile drag is not included in the calculated values.

The variation between the pitching moment curves can be attributed to the

absence of the fuselage on the theoretical model and to boundary layer dis-

placement and local separation effects.
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A comparison of the calculated surface pressures with experiment often

shows a variation between them which increases with inlet velocity ratio.

Figure 4, taken from ref. 2, shows an example with an inlet velocity ratio of

3.636. Large differences are apparent, particularly in the vicinity of the

fan and flap regions. Gross deviations of upper surface pressures near the

fan are probably caused by inaccuracies in the assumed inflow distribution.

Large deviations on the lower surface near the fan exit can be attributed to

jet entrainment effects which were not simulated theoretically. The discrep-

ancies in the flap pressures, which are greatest at the station directly aft

of the jet, may also be due in part to the strong influence of the entraining

jet as well as to viscous effects which are important in this region. This

example serves to illuminate the importance of both inflow distribution and

proper jet representation in the theoretical treatment of V/STOL problems.

Lesser discrepancies that exist in regions more remote from the fan must also

be due partly to these effects, because experience with the method applied to

conventional airplanes has demonstrated an order of magnitude improvement in

detailed surface pressure comparisons when lift fans are not present.

Thus it appears of utmost importance for V/STOL applications to improve

our capability to treat these effects properly. The question of what is the

proper inflow distribution can be answered partly by further experimental

measurements and correlation with the basic parameters, and involves no change

in the basic theoretical or numerical representation. The representation of

the jet efflux, however, poses a more difficult problem.

_EPREZENTATION OF A JET IN A POT]_ITIAL FLOW

Let us examine the jet representation in some detail and attempt to

identify those parameters which can have the most significant effects on the

calculated flow near the surfaces of the airplane.

Basic Concept

The representation of a viscous, turbulent jet by means of a potential

flow model is based on the following concept. Consider the example of a

Jet emerging from a body into a flow field. The flow external to the jet is
considered to be inviscid and irrotational. This allows the definition of a

velocity potential _ associated with the inviscid external flow. Let us

define a closed boundary S consisting of two parts; one part S 1 being the

body surface and the other part S 2 being any arbitrary surface encompassing

the turbulent jet flow, Fig. 5. Green's theorem applied to the exterior

potential flow field (ref. 3) leads to the following expression for the

potential _ .
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where

(x,y,z) - J ./y r.(s)
++rjj r ds

SOURCE
DISTRIBUTION

+ _-_-Tff F(s) _an (+)ds

• S j

DOUBLET DISTRIBUTION

m(s) = source strength on S

_(s) = doublet strength on S

r = distance from S to a field point (x,y,z)

n denotes the direction normal to S

(1)

The terms on the right-hand side of Eqn. (1) can be interpreted as dis-

tributions of source and doublet singularities on the boundary surfaces. The

singularity strengths, m(s) and M(s), can be obtained as the solution of

the boundary value problem obtained by letting the field point (x,y,z) in

Eqn. (I) approach the boundary surface and differentiating the entire equation

with respect to the surface normal, giving

The numerical method previously described furnishes solutions for m(s) and

_s) _t' S)
as a function of the normal velocity component _-_ on the boundary

surfaces. Thus the entire flow field described by _ _x_y,z) isultimately

dependent upon a knowledge of the normal velocity component_n(S) on the
boundary surfaces.

In the usual problem, _ is known on the body surface SI, which in-%n
cludes the external surface of the airplane through which no flow can pass,

plus the portion of S1 across an inlet on which the value _ of _n ' which

provides the inflow distribution, must be specified. If _ werU"eknown on
S2 as well, then the influence of the jet on the external-flow would be

accurately established. However, this is not the case, and so our ability to

simulate the effect of a jet on the external flow ultimately reduces to a

need for estimating the distribution of the normal velocity component 3_n(S2)
on any arbitrary boundary surrounding the turbulent jet.

This needed information must be obtained fro= experimental observation.

The recent literature (ref. 4) indicates that experimentalists are acquiring

greater insight into this problem. Ultimately, it is hoped that their work

will lead to a set of empirical relationships which provide the information

necessary for an accurate jet representation with a potential flow model°
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Important Features of a Jet

These experimental efforts lead one to try and identify the most

important characteristics of the theoretical jet model in order to reduce the

task from one of predicting the detailed _n distribution on an arbitrary

boundary surrounding the jet to that of establishing those gross features of

the jet which produce the greatest influence on the flow near the configura-

tion surfaces. Let us consider first the jet trajectory. There is no need to

place S2 exactly at the jet boundary, but it is necessary to estimate the

approximate path of the jet. Its initial path is usually known from the

nozzle orientation and so the problem reduces to the establishment of the

trajectory some distance downstream from the exit where the Jet is turning in

response to its interaction with the cross flow. The required accuracy of the

trajectory estimation is strongly dependent on the proximity of the jet to any

of the configuration components (wing, tail, etc.). If the jet passes close

to any parts of the configuration, its path must be known with greater accu-

racy than if it is directed away from the configuration, because the error in

the velocity at the configuration surface caused by an error Ar in the

location of a segment of the jet located a distance r from the configuration
surface behaves as Ar .

7
Experimental observations of a single jet emerging into a uniform cross

flow have led to the formulation of a well-known empirical trajectory equa-

tion by R. J. Margason (ref. 4). This equation is adequate for those con-

figurations where the jet does not pass near any of the configuration com-

ponents. In cases where the jet does pass in proximity to the configuration,

it may be necessary to take into consideration the effect of the local air-

plane-induced flow field on the jet, and also perhaps the detailed properties

of the jet flow which govern to some extent the rate of entrainment and the

subsequent turning force applied to the jet by the outer flow. These effects

greatly complicate the problem, and it thus appears that in the near future

the application of potential flow methods will be restricted to configurations

having jets directed away from any configuration components.

Having determined the trajectory of the jet centerline, the remaining

problems involve the determination of an appropriate approximation for the

location of the surface S2 with respect to the jet centerline, and the

of the velocity component ._n on S 2. Consider first thespecification

limited portion of the jet immediately adjacent to the nozzle exit and ex-

tending down the jet perhaps one or two nozzle diameters, as shown in Fig. 6.

The jet boundary in this limited region must retain quite closely the known

cross-sectional shape of the jet nozzle and expands in a manner that could be

approximated by known relationships governing the rate of spreading of axi-

symmetric turbulent jets. Such an approximation could easily be checked and

possibly improved by means of flow visualization experiments. Actually, it

is probably not necessary to attempt that degree of sophistication in order to

locate S2. A simple approximation consisting of a nonexpanding jet cross

section retaining the shape of the jet exit, Fig. 6, may be adequate as dis-

cussed below. Referring to Fig. 6, the normal velocity components on the
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actual jet boundary can be analytically continued by Taylor series expansion

to the proposed surface S 2 by an equation of the form

a.._(r+Ar) = .D._(r) +Ar a2(P(r)
an an ana r + O(_r2) (3)

where

a_ (r+Ar)
an = normal velocity component on the actual jet boundary

s_r__rj = normal velocity component at a corresponding point on
an

the surface S 2

r = radial distance from the jet boundary to the surface S2

If Ar << r , which is the case in this limited region near the Jet exit,

true, there is no need for a jet boundary representation in this region that

is more sophisticated than the simple one proposed above.

Let us continue our examination of this limited portion of the jet and

turn to the property most important and most difficult to determine; namely,

the value of _ on S 2. Figure 7, taken from ref. 4, shows the pressure

distribution measured on the surface of a plate which has a jet exhausting

normal to the plate in the presence of a freestream. The pressure pattern

displays fore and aft asymmetry, which strongly indicates that the flow

around the Jet is not similar to attached flow about a cylinder. Reference 4

also shows oil flow patterns on the plate which display the features sketched

in Fig. 8. The gross features indicate that the flow is deflected about the

jet as with a cylinder. However, the details show flow into the jet along

the sides, a stagnation point on the plate aft of the jet with upstream flow

ahead of the stagnation point into the jet, and a well-defined oil accumula-

tion line streaming aft of the jet. There is obviously entrainment of

exterior flow into the jet, both on the sides and into the aft portion. Thus

we are faced with the prospect of having to determine the strength and dis-

tribution of this inflow around the jet. In a potential flow model this in-

flow, which appears as the value of _n to be specified on the boundary S2,n
is the quantity which most strongly controls the detailed features of the

flow near the jet exit.

Let us now consider the downstream portions of the jet. Flow visualiza-

tion studies have revealed that in the presence of a cross flow, the jet pro-

gressively rolls up into a vortex pair, such as sketched in Fig. 9. Photo-

graphs of the cross section of a jet wake such as given in Fig. 21 of ref. 4

reveal a strong induced inflow into the aft portion of the jet (see Fig. 9).
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Thus it appears that the downstream portions of the jet can be characterized

as a vortex pair that is continuously entraining fluid from the outer in-
viscid flow into the viscous jet.

The main objective in attempting to model this jet flow is to reproduce

the proper induced effects in the vicinity of the configuration surfaces.

The detailed features of the flow in the immediate vicinity of the jet wake
itself do not matter as long as its long-range effects are correct. This is

true in so far as the distance of the jet from the configuration components

is large compared with the mean jet radius. Hence let us attempt to identify

those features of the Jet wake which dominate its long-range influence.

One can speak of the influence of a jet in terms of the velocities in-

duced by a distribution of singularities on a surface S 2 surrounding the

viscous jet. This representation is exact provided the singularity strengths

are known. Alternately, the surface distribution of singularities can be re-

placed by a multipole expansion on the jet centerline, which will be of the
form

_(x,y,z) = - I f m_s) ds + _-.__./_(s)(-_._') ds +4_r./ r r3

where

r = distance from Jet centerline to the point (x,y,z)

P = unit vector normal to the centerline in the plane of
the trajectory curve, Fig. 10

The first term on the right hand side contains the long range effect of
the entrainment, or inflow into the jet. It represents a distribution of

sinks along the jet centerline, with their net strength per length As approx-

imately equal to the integral of the inflow velocity -_n around a strip of

width As encompassing the viscous Jet, as sketched in Fig. 10. At very

large distances from the jet, this term alone will produce the primary effect,

because all other terms die off more rapidly with increasing r .

At intermediate distances, the second term may also be important. It

represents a distribution of doublets with axes normal to the jet centerline

in the plane of the paper, Fig. 10, and produces the major long range effect

due to the distribution of entrainment or inflow around the jet circumfer-
ence. Furthermore, its effect at large distances will be the same as that due

to a vortex pair oriented in the manner of Fig. 9. This latter feature can be
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derived by expanding the potential of a two-dimensional vortex pair spaced a

distance 2d apart in powers of d/r . The result is

i Et°,- z+d .to,-,zd_1 I2¢o,ez; x ~ r
(5)

The first term on the right represents a two-dimensional doublet located

at the origin. The difference between the influence of the doublet and the

vortex pair at distances larger than the jet radius ( rje t _ d) is O(d2/r2).

Thus one is able to associate with a sink and doublet distribution along

the jet axis the major features of the jet that have yet been identified by

flow visualization; namely, a net entrainment into the jet with the distribu-

tion of entrainment around the circumference dominated by the vortex pair flow

pattern. Figure II shows a two-dimensional velocity pattern about a super-

imposed sink and doublet which clearly displays these characteristics. It
should be noted that an actual distribution of sinks and doublets on the axis

is not necessary to produce these effects. The jet can be represented by any

convenient surface cross section having boundary conditions producing the sink

and doublet effects. As an example, a circular cross section of radius R with

boundary conditions of the form

_______(R,8) Cl + C2"cos8 (6)
_n - 2w'R 27r R 2

will produce the same effect as a sink and doublet at the circle center having

strength C1 and C2 respectively.

For configurations where the jet does not pass in close proximity td any

aircraft component it is unlikely that the finer details contained in the

higher order multipoles will have a significant effect because of their rapid

attenuation with distance. In any event, the estimation of the jet trajectory

itself with sufficient accuracy becomes very difficult with close proximity

jets, as previously noted, so it appears that, for the present, the use of

potential flow methods shall be restricted to configurations with remote Jets

for which the sink-doublet representation is applicable.
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In summary, the most important properties of the jet representation are
the following:

l. Trajectory. At present there exists an empirical trajectory

equation which is adequate for jets not in close proximity to
the configuration.

.

.

.

Near the jet exit, a surface S2 is required. It can have the

cross-sectional shape of the jet exit and need not be tapered

to correspond to the expansion of the jet.

A detailed distribution of a_

quired. This probably has t_e on S2 near the jet exit is re-greatest influence of any of the

jet _operties. Our present knowledge concerning the distribution
of _zr__ on S 2 is only qualitative.an

The influence of the downstream portions of the jet must contain

sink and doublet effects. The magnitude of these effects is pre-
sently unknown.

PROPOSED POTENTIAL FLOW MODEL OF A JET

In view of these properties, I propose the model shown in Fig. 12 as

suitable and convenient for use with the potential flow calculation procedure

described herein. The cross-sectional shape of the jet exit is retained all

along the jet as a matter of convenience. The trajectory is established by

Margason's equation (ref. 4). The remaining quantity to be established is the

distribution of _ on the surface, and this must come from experimental

observation. Idehlly, one would like to express the _ distribution in
.

terms of a few parameters and attempt to establlsh a correlation between these

parameters and the jet deflection angle and velocity ratio. One possible

parametric representation is the expression

(s,8) : ..(s) cos.8 (?)
n

The first term, aO(s ) , provides the longitudinal distribution of the

total inflow or entrainment along the jet. The second coefficient,al(s ) gives

the longitudinal variation of the doublet or vortex pair effect. Higher order

terms, if needed, will be important only near the jet exit. Their influence

on the configuration rapidly disappears with increasing s, and their presence

or absence for large s will not affect the flow in the vicinity of the con-

figuration surfaces. This latter behavior suggests that the variation of an
with s for n _ 2 can possibly be neglected, leaving only constants correspond-

ing to the value of an(O ) . This possibility should certainly be explored.
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SUGGESTED EXPERIM]_ITAL PROGRAM FOR THE

DETERMINATION OF THE JET PARAMETERS

With this type of representation, one is faced with the necessity of

determining, as a minimum, the functions aO(s) and al(s ) plus perhaps some

constants for the next few an'S. These will have to be established from

experimental observation, but how?

One possible approach would be to examine the results of an experiment

conducted with a Jet emerging into a cross flow at various angles from a

large flat plate as sketched in Fig. 13a. The plate must be large enough to

avoid boundary layer separation at the edges due to Jet induction effects

and should contain a detailed static pressure survey. The basic idea is to

adjust the an'S in a theoretical solution of this problem, Fig. 13b, to re-

produce the measured pressure distributions on the plate. The final result

would be a number of curves or fitted equations describing the variation of

the an'S with jet velocity ratio, thrust vector angle, and a Jet dynamic pres-

sure decay parameter (see ref. 4). An attractive feature of the scheme is

that theoretical solutions for several different distributions of an(S ) can be

obtained nearly as economically as for one, since the influence coefficient

matrix in the numerical solution procedure is independent of the an'S. Or,

one could attempt to mechanize the process by expressing aO(s ) and al(s )

as power series in s and calculating, with a potential flow model, the

separate influence of each term in the series. This could also be done

economically due to the constancy of the influence coefficient matrix. These

individual solutions, or flows, would serve as basic building blocks which

could be linearly superimposed to produce any desired flow pattern. Armed

with these, an investigator could readily construct all possible theoretical

flows.

A point to note in attempting to match theoretical and experimental plate

pressures is that the pressures away from the jet exit are governed mainly by

aO(s) and al(s), whereas the pressures adjacent to the exit are strongly in-

fluenced by the higher order an'S.

CONCLUDING REMARKS

The results of previous potential flow calculations for V/STOL applica-

tions have demonstrated a need for improved modeling of the jet flow. With

this objective in mind, a theoretical model for a jet has been proposed which

is based on the observed major features of real jet flows. An experimental

program is suggested as a means of obtaining a correlation relating the jet

boundary conditions in the theoretical model to the jet parameters.
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Figure i.- Theoretical model of fan-in-wing configuration.
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• Internalandfan face vorticesomittedfor clarity

Figure 2.- Panel arrangement on fan-in-wing configuration.
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Figure ll.- Velocity pattern about a superimposed sink and doublet in a

uniform stream.
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Figure 12.- Proposed model of jet.
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Figure 13.- Test setup for evaluation of jet entrainment characteristics.
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INVISCID MODELS FOR THE PRESSURE INDUCED BY A

JET TRANSVERSE TO A SUBSONIC STREAM*

By Robert Rosen, Norbert A. Durando, and Louis A. Cassel

McDonnell Douglas Astronautics Company--Western Division

SU MMARY

Methods are presented for approximately predicting the pressure

distribution on a fiat plate in the vicinity of a transverse jet exhausting into

a subsonic uniform stream. A method is formulated for empirically fitting

the available data to enable interpolation and extrapolation. In addition, sev-

eral inviscid flow models are postulated, based on incompressible potential

flow theory. Some models were found reasonably successful while others

were not. This paper presents the formulation of the empirical fit, analysis

of the models, and comparison of results from the models with experimental

data.

The first subject discussed is the formulation of an empirical technique

for fitting the data. Following this, results of two approaches to potential

modeling of the flow are presented. In the first approach, all of the known

significant phenomena, such as entrainment and blockage, are included in an

approximate way. Singularities are distributed to account for these effects

but their strengths are left arbitrary. A pressure-matching scheme is

employed to quantitatively determine the strengths. The potential flow

methods used in the second approach are more direct for the purpose of the

study. They consist of postulating a flow field which will give the proper

qualitative pressure distribution and adjusting constants to fit this distribution

as closely as possible.

INTRODUCTION

Interaction of a highly under expanded sonic or supersonic jet with a sub-

sonic transverse flow represents a jet interaction (JI) problem encountered in

the design of many reaction-controlled atmospheric flight vehicles. Conse-

quently, an effort is being made to develop analytical methods for predicting

the pressure distribution, and therefore the forces and moments produced by

the jet, and the interaction flow field for various flow conditions and vehicle

geometries. Some results of such an effort, being conducted by the McDonnell

Douglas Astronautics Company--Western Division under the sponsorship of the

U.S. Army Missile Command, are described in this paper. The work dis-

cussed here is limited to an analysis of the pressure on a flat plate in the

vicinity of a jet exhausting transverse to the plate. B°th empirical methods

and incompressible potential flow modeling will be described.

*This research supported by the Advanced Systems Laboratory, U.S. Army
Missile Command under Contract number DAAH01-68-C-19-19.
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Detailed descriptions of the flow surrounding a subsonic jet exhausting

transverse to a subsonic uniform stream, based on the results of careful

experiments, are available in references 1 and 2. Similar detailed experi-

ments for sonic or supersonic underexpanded jets do not exist. In the opinion

of the authors, however, adding a sonic or supersonic jet only complicates

the flow field further. In both cases, the complexity of the flow field is such

that an exact analytical description of it is beyond current developments in

fluid mechanics. Consequently, empirical methods and potential flow anal-

ogies to the fluid mechanics, as known from available experimental data,

have been employed in the initial efforts to predict pressure distributions.

The objectives of effort described in this paper are to devise techniques for

approximately predicting the forces and moments on bodies from which the

jet exhausts and not necessarily to derive detailed analytical descriptions of

the flow. The direct problem of interest initially has_therefore_been taken to

be the analytical modeling of the pressure distribution on a flat plate in the

plane of the jet exit.

In the analysis that follows, it will be assumed that the fluid behaves as

if it were incompressible and irrotational. Viscosity, if taken into account

at all, will be introduced through its bulk effects, such as entrainment, and

will not enter any of the equations. Thus)a potential exists for this flow and

solution will be sought based on incompressible potential flow theory. Some

other authors (refs. 3 through 6) have also used inviscid flow theory to

describe the problem but with limited success.

Although some flat-plate pressure data do exist for an underexpanded jet

exhausting into a subsonic stream (refs. 7 and 8), they are rather incomplete.

Recent experiments have been carried out by the U.S. Army Missile Command

which are quite comprehensive, but data from these tests are not yet available.

For lack of data more appropriate to the present study, the subsonic jet data

of Vogler (ref. 9) will be used. It is felt that theoretical and empirical

models which can be made to agree with these data can also be made to agree

with sonic and supersonic jet data.

The coordinate system used in the analysis of the pressure distribution

on a flat plate is shown in figure I. The polar coordinate, @, is measured

counterclockwise from the mainstream velocity. The radial coordinate,

indicated as r'when dimensional, is measured from the jet center. When non-

dimensionalized by the jet diameter, the radial coordinate is indicated as r .

SYMBOLS

an

C
P

C
n

d
J

singularity strengths_ where

pressure coefficient

Fourier coefficients, where

jet nozzle diameter

n = O, l,

n = O, l,
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F

k

M

P

q

r

r

U

W

x*,y*,z*

Z

8

P

Subscripts :

J

O

oo

force

scale factor

moment

pressure

dynamic pressure

radial distance normalized by jet diameter

dimensional radial coordinate

velocity

complex potential

dimensional Cartesian coordinate

complex variable normalized by dj

azimuthal angle measured positive in the counterclockwise

direction from the leeward ray

density

jet

vortex position

free stream

A bar over a symbol denotes a complex conjugate.

DISCUSSION

Empirical Data Fit

A typical plot of pressure coefficient, Cp, versus 8 at a given value

of r is shown in figure 2 based on the data of Vogler. Because of the smooth-

ness of these data for e > 30° and the fact that the data are even, it appears

that the data can be approximated quite well at a given radius by the first few

terms in a Fourier cosine series.

m

Cp : Z Cn(r) cos (ne)

n=0

(1)

where the coefficients cn are given by their usual integral definitions. Fig-

ures 3 and 4 show comparisons of two- and a three-term series to the data at
two values of r. It can be seen that the truncated Fourier series does indeed

provide a good representation of the 8 dependence of the data. The same
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results have also been found to hold true at other values of r and other velocity

ratios (U00/Uj).

To complete the empirical fit, the radial dependence of the coefficients cn

must be found for the various values of the velocity ratio. This dependence is

shown empirically in figures 5 and 6. It can be seen that the variations of c O

and c I as functions of r and the velocity ratio are well behaved. It would be

a simple matter to obtain functional relations for this dependence to com-

pletely determine the empirical fit. However, a better way has been found to

use this information through potential flow models.

Phenomenological Models

Two models will be considered under this heading. The first, called the
doublet model, consists of the superposition of a free stream, a source (or

sink), and a doublet. The second flow model, called the doublet-vortex model,

is the same as the first except'that two counterrotating vortices are added

downstream of the origin. A sketch of this model is shown in figure 7. Both
of these models are two dimensional, in that it is assumed that there are no

variations in flow properties in the direction normal to the plate.

The complex potentials of these simple models are well known. The only

quantities to determine are the strengths of the singularities and locations of

the vortices for the doublet-vortex model. In the present analysis, the com-

plex potential for the flow field is written in terms of the unknown singularity

strengths. From this complex potential, an expression for the pressure

coefficient in terms of cosine functions is obtained and put in the form of

equation (1). By setting each coefficient in the derived pressure-coefficient

expression equal to the corresponding one in the Fourier series obtained from

the data at a given value of r, the strengths of the source, doublet, etc., are

found. This is done for several values of the velocity ratio, and curves of the

source strength, etc._are obtained as a function of the velocity ratio. The

benefits of this technique are twofold: First, with its use a limited amount of

data can be greatly extended; second, and perhaps more important, by seeing

which singularities are strongest, the dominant factors in the flow field can be

inferred. This information could be important in trying to relate the results

obtained for a flat plate to an axisymmetric body.

The model will yield results that are accurate at one value of r, the one

where the data and model were matched. The accuracy of results at other

values will depend upon how closely the r dependence of the model depicts

the actual situation. There is an assumption implicit in the above analysis

which must be satisfied to obtain reasonable results. The quantity which will

ultimately have to agree with experiments is the expression for the complete

pressure coefficient, not just the first few terms in its Fourier series repre-

sentation. In order for theoretical and experimental pressure distributions to

agree, the first few terms in the series derived from the complex potential

must be the dominant ones. Terms which appear later in the series and are

not used in determining the strength of the singularities, must be small. For

the models considered_this has been the case.
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There is one distinct advantage to this truncated Fourier series technique.
The force or moment on the plate due to the interaction can be calculated from
the formula,

[_[Z_ q_ r(l+n)C cos(nO)drd0
ForM = p

"0"0

where the force is obtained if n = 0 and the moment results if n = I. If the

pressure coefficient is written in the form of equation (i), the integral
becomes

I I q r (l+n) cos(n0) c cos(me)m
=0

drdO

or

m_ %or (1 +n) c m

=1 -OJO

cos(nO) cos(mO)drdO

Due to the orthogonality of the cosine, this now becomes

and

Z_r

F = I f0. q_c0rdrd0

2Tr

M = 10 10 qoocl cos 0 r2drd0

Thus, the total contribution to the force comes from the first term of the

Fourier series (truncated or complete))and the total contribution to the
moment comes from the second.

Matching the first couple of terms of a Fourier series takes on more

significance in the light of these results. If models could be found that would
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have very close agreement in these terms for all values of r, then the two

quantities of specific interest could be predicted quite well.

Although comparison of forces and moments between the theoretical

models and experimental data will not be made, an approximate indication of

how the forces compare can be obtained from the following. Consider equa-
tion (i) at O = _/2,

Cp(_/Z) = co - cz + c4 + ...

If

c o >> c 2 >> c 4

which is true in at least some cases, then

Cp(_/2) _ c o

Thus, since the force is equal to the area under the c0(r ) curve, weighted by

r, the force will also be equal to the area under the Cp(w/2) curve, again
weighted by r. In this case if the model predicts accurate pressure coeffi-

cients along the ray 0 = _/2, then the force predicted will also be accurate.

Therefore by just comparing pressures at @ = _/2, a good indication of the
quality of force prediction of the model can be obtained.

The best way to illustrate the above ideas is through an example. The
complex potential for the doublet model is

a2

w(z) = aOz + a 1 log(z) + (2)
Z

where z is normalized by dj. Usually a 0 is chosen equal to Uoe and the pres-
sure coefficient defined

C
P

P-Poe

(1/z)pu_ z
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is given by

C = 1
P

1

However, this leaves only two arbitrary constants in the analytical expres-

sion for the pressure coefficient which can be matched to only the first two

terms of the Fourier series representation. Since three terms in the series

are considered necessary to approximate the wake-like distribution for

@ -<30 °, a third constant is required in the analytical expression. To provide

this third constant, a 0 is chosen equal to U_/Uoo, and the pressure coefficient
is defined as

P! -- Po_

C

where the primed quantities are for the two-dimensional model and are not

necessarily equal to the unprimed, or actual quantities. With these defini-

tions, the pressure coefficient becomes

dw:
P

(3)

These relations can be obtained by considering the static pressure at infinity

in the model to equal the actual static pressure, while the total pressure (and

therefore free-stream velocity) of the actual flow differs from that of the

model. These manipulations leave a0 freeto be used in the pressure matching.

Substituting equation (2) into equation (3) gives

2 2
a 1 a 2 2 -2z+E z +z z+E

C - aoal -- + ana_v ,. + a a 2 - (4)p z_ 2_2 zE 2_2 1 2_2
Z Z Z Z Z Z

Equation (4) is now to be expressed in the form of equation (1).

done directly for the present example by the substitution

i@ -- -i@
z = re , z = re

This can be
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or for more complex models by the integral definitions of the coefficients

cn(r),

1 C (r, O)dO

c0(r) = 7 J0 P

2 Cp(r, @)cos(he)deCn(r ) =

After some algebraic reduction the constants for the present example are

found to be

CO(r)

z z

a I a 2

Z 4
r r

at( )

cl(r) = -Z--r a0 I

cz(r ) _ 22 a0a2
r

(5)

These expressions for the coefficients c n are to be set equal to experimentally

determined values at a fixed value of r. The location chosen was the circle

r = i, a choice which is somewhat arbitrary. For avelocity ratio (U00/Uj) of

0.4, the values of the coefficients cn are

Co(1 ) = -0. 619

c1(i ) = -0. 843

cz(l ) = +0. 287

Numerical solution of equations (5) then gives

212



ao

a 1

a2

= 0. 745

= 0. 762 _ (6)

= 0.192 j

These results indicate that for the proper behavior, the source is indeed a

source and not a sink. Further, the blockage effect of the doublet, which

opposes the free stream, is considerably smaller than the effect of the source.

Expressing equation (4) in the form of equation (1) gives a summation
which contains just three terms. Thus, the constants given by equations (6)
will reproduce the three-term cosine series exactly at r = 1. An idea of the
accuracy possible through use of this doublet model can be obtained from
figure 3 in which results from a three-term series are compared to the data
at r = 1. It can be seen that the agreement of the doublet model with the data
is quite good for most values of @. The real test of the model, however, is
the agreement at other values of r. Comparison of the modelwithVogler's
data for five rays, @= const, is shown infigures 8 through 12. Examination of
these figures shows considerable disagreement around the upstream and down-
stream rays and fairly good agreement near the ray @= _/2.

The accuracy of other results obtained from this model at different

velocity ratios is similar to that described above. Thus, it can be concluded

that this choice of singularities will not yield pressure distributions suffi-

ciently accurate to be of practical use.

The other phenomenological model employed in this study is shown in

figure 7, as mentioned previously. In addition to the source (or sink), dou-

blet, and free stream, there are two vortices of equal strength (but opposite

sign) located downstream of the origin. These are included to represent the

vortex motion that actually exists in the flow. It was at first expected that by

taking the reverse flow downstream of the jet into account, increased accu-

racy would result.

The complex potential for this flow is

w(z) = z + a I log(z) + --z + ia3 log z
(7)
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Here z is, again, normalized by d_, and w is normalized by Uoo. Since the

free-stream velocity in this modelJis Uoo, the usual definition for the pressure
coefficient is chosen in the form

C - - 1 -
P q_o _zz Tzz

Calculating C from the above expression results in
P

2 2

az az _(a2) (z + E_ al a2C + -a I 1 -
p : --Z Z _ \--_/ zZ Z_Z

Z Z Z Z

2-2 2_ 2

z z + a,z z- a,z
1

+ a3(z - - _ _ +
o Zo) z2EZ(z Zo)( z E ) z g- - O O

O
z2 +--a--lZ- 72 }

-- (z zg - - zg

,zo- i iI+ a_ - z°) z
z E - zE zE

o o (z- Zo)(Z- zo) z z z-_--z
0 0

(8)

This expression contains five unknowns, al, a2, a3, ro, and Oo, where the
last two are the coordinates of the location of the vortices. These unknowns

can be determined in several ways. One is to express the pressure coeffi-

cient in a five-term cosine series and equate the coefficients to a five-term

series of the data. Another is to write a three-term series and equate the

coefficients at two values of r (i.e., equate three coefficients at one loca-

tion and two at the other). A third option is to use physical considerations

to determine two unknowns, and use the three-term series to determine the

other three. This third option was chosen as the one to use, although it is

obviously an arbitrary choice. The physical consideration is the so-called

vortex equilibrium criterion; namely, the velocity at the location of each

vortex due to all of the other singularities is zero. This criterion insures

that there is no force tending to convect the vortices downstream (ref. I0).

It yields the two relations,

cosO a
o 1

r 2a ZO
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and

tan 30 tan20 + -- + 1 tan0 - 0

o a 1 o o a 1
\ a 1

After some algebraic reduction, equation (8) can be written in the form of

equation (1) and the coefficients c n set equal to those determined from the

data. The expressions are rather lengthy and will not be presented here.

Solutions of these three equations along with the two stability equations have

been obtained numerically for a velocity ratio of 0.4. Since the equations

are nonlinear, several extraneous roots appear. However, there is little

doubt as to which ones are physically realistic. The results are

a I - 0.1Zl

a Z - 0.048

a 3 = 0. 668

0 = 36.3 °
o

r = 0.64
o

These again show that the doublet is considerably weaker than the source but

in this case, the source is really a sink. Physically, this result seems more

realistic than the result of the doublet model since the sink represents

entrainment. Also, the vortices have the sense of rotation expected physically.

The value of the pressure coefficient determined from these results as a

function of r for various values of O, compared m, ith the data of reference 9,

again shown in figures 8 through 12. Evidently, the agreement is unsatis-
factory. For much of the surface of the plate, the agreement is worse than

that obtained with the simpler doublet model without vortices.

is

The failure of the doublet-vortex model to correctly predict pressure

distributions on the leeward side points to a fundamental difficulty of all

inviscid models which attempt to simulate the observed velocities near the

plate surface. It is known from experiment (ref. II) that immediately

behind the jet the fluid velocity is inward toward the orifice. (The presence

of vortices in the doublet-vortex model was supposed to account for this fact.)

Considering figure 7, it is evident that because of symmetry and the condition

of no flow through the plate, the velocity vector along the 0 = 0 ray must be

aligned with that ray. Consequently, if far downstream perturbations are to

decay and the velocity along the O = 0 ray is to become equal to Uoo, the flow
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must reverse direction and have a stagnation point in between. If no account

is taken of viscous dissipation, the pressure at this stagnation point will

recover to free-stream stagnation pressure, and the value of the pressure

coefficient will be unity. Apparently, this difficulty will be encountered with

any inviscid model that attempts to reproduce the inward velocity observed

experimentally, no matter how complicated.

Pressure Models

For these models the point of view is taken that since the pressure dis-

tribution is known qualitatively, a flow can be constructed that will yield

approximately this pressure distribution. At this point, free parameters (if

there are any) are adjusted to obtain the best agreement with the data.

With this viewpoint, it is clear that the results obtained from the model

should have a high-pressure region on the windward side of the jet and a low-

pressure region on the leeward side. These both asymptotically decay to

free-stream pressure at infinity. The nature of potential flow is such that to

obtain this sort of pressure distribution, the velocity of the fluid due to what-

ever represents the jet must be in the same direction as the free stream on

the leeward side of the jet and opposing the free stream on the windward side.

Further, the singularities making up the disturbance to the free stream must

be restricted to the neighborhood of the origin.

The simplest model which will meet those criteria is a source in a free

stream. A source, doublet and free-stream model is more general and was

tried above. However, by considering the 0 = 90 ° ray and the fact that the

sign of the doublet is positive it can be seen that agreement will improve if
the doublet was removed. Another model was tried which consisted of the

superposition of the axisyrnmetric flow out of an orifice in a flat plate and a
uniform free stream. Both the source model and this orifice model will be

described in this section.

The complex potential for the source model is well known. It is

w(z) = a0z + allogz (9)

Calculating a 0 and a 1 by using the method described above for the doublet
model yields the pressure coefficient

2

al z+E
C - a0a I (i0)
p z_ z_
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which can be written as

Z
al cosO

C - Z Za0al (11)
P r r

The coefficients of the cos(n0) terms are now equated to the Cn determined

from experimental data. Since these Fourier coefficients are independent

of each other, c o and c 1 for a velocity ratio of 0.4 should have the same value

as given above. -However, for these last two models an adjustment has been

made in the data of Vogler. At large distances from the orifice, the pressure

coefficient should approach zero but the data do not show this. To correct

this, the simplest approach was taken. A constant was added to the value of

the pressure coefficient, Cp, on each ray so that it approached zero as r
grew large. Of course, a different constant was used for each value of 0.

With this, the values of c o and c 1 become

co = -0.725

c I = -0.823

where the matching is again at r = 1. Solving for a 0 and a 1 yields

a 0 = 0.483

a = 0.851
1

Comparison of this model with experimental data is shown in figures 13

through 17. Like figures 8 through 12)these are plots of the pressure coeffi-
cient as a function of the radial distance from the center of the nozzle for

several values of 0. As can be seen, this model gives quite good agreement

in the vicinity of 0 = 90 °, but the agreement around 0 = 0 ° and 0 = 180 ° is not

as good. This is typical of the results obtained for other velocity ratios. It

can therefore be expected that while this model will not predict pressure dis-

tributions accurately for all 0, it will be good for 0 near 90 ° and will give

good results for forces on plates.

The discrepancy between the data point at r = 1 in figures lO and 15 is due

to difficulties in reading Vogler's data at these values for r and O.

Curves of the values of so and aI for this model as functions of the veloc-
ity ratio are shown in figure 18.
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The final model to be discussed has been mentioned before. It is

composed of the superposition of two simpler flows, but this time one is axi-

symmetric and the other is added to it in such a way that the result is fully

three dimensional. The axisymmetric portion is the flow out of a circular

orifice in a flat plate. Reference 12 has a discussion of this solution. The

other flow is a uniform free stream aligned so that its velocity vector is tan-

gent to the plate. Carrying out the analysis and obtaining an expression for

the pressure coefficient on the plate gives

u /U cosO (uj/u ) z
c = _ j _ 1 {lZ)

P (_)J(k)2 1 4 (k)2 [(k)2 1 ]

where the pressure coefficient retains its usual definition and k is a function

of the velocity ratio, which is used to adjust the accuracy of the results. A

curve of k as a function of the velocity ratio is shown in figure 18, along

with the dependence of a 0 and aI on Uc0/Uj.

Comparison of the results of equation (12) with data is shown in fig-

ures 13 through 17. It can be seen that there is good agreement except near

0 = 90o . Since the model is inaccurate near 0 = 90° , it cannot be expected

to give good results for forces (the singularity in the model is excluded

from the integration), but its accuracy along the 8 = 0 and 180 ° rays indi-

cates that the moments derived from it should agree closely with experiment.

CON CLUSIONS

A summary of the conclusions which have been reached in this paper are

given below

l. By using a truncated Fourier series, a relatively simple empirical fit

of the data is possible. While it is clear that an exact fit, in the mean,

is always possible using an infinite series for a fixed r, it is shown

that good results are possible by using only two or three terms.

o Reasonable results for pressure distributions can be obtained using invis-

cid models. However, good agreement is usually restricted to apartic-

ular range of O. For instance, the source model gives good results

around O = _/2_while the orifice model is best near O = 0 and O = Tr.

. As a corollary to conclusion2, it is possible to obtain forces accurately

from an inviscid model3and it is possible to obtain moments accurately

from an inviscid model At the present time, it does not seem to be

possible to obtain both from the same model.
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o

Adding greater complexity to the phenomenological models does not

appear to improve their results. This is due to the stagnation point

occurring along the axis.

Effects of viscosity must be included in any analysis which is intended

to predict the flow properly, especially downstream of the jet.

REFERENCES
I

io

°

.

.

.

,

.

o

Keffer, J. F. ; and Baines, W. D.: The Round Turbulent Jet in a

Crosswind. J. of Fluid Mech., vol. 15, 1963, pp. 481-496.

Pratte, B. D. ; and Baines, W. D. : Profiles of the Round Turbulent Jet

in a Crossflow. Journal of the Hydraulics Division, Proceedings of the

ASCE, November 1967.

Cassel, L. A. ; Davis, J. G. ; and Engh, D. P.: Lateral Jet Control

Effectiveness Prediction for Axisymmetric Missile Corgigurations.

U.S. Army Missile Command, Report No. RD-TR-68-5, Redstone

Arsenal, Ala., June 1968.

Wooler, P. T.; Burghart, G. H.; and Gallagher, J. T.: Pressure

Distribution on a Rectangular Wing with a Jet Exhausting Normally into

an Airstream. Journal of Aircraft, vol. 4, no. 6, November-

December 1967.

Kuiper, R. A. :

Flight Regimes.

December 1964.

Control Jet Effectiveness in the Subsonic and Transonic

Philco, Aeronutronic Division Publication No. U-2932,

Bradbury, L. J. S.; and Wood, M. N. : The Static Pressure Distribution

Around a Circular Jet Exhausting Normally from A Plane Wall into an

Airstream. Gt. Brit. Aero. Research Council, CP No. 822, 1965.

Reichenau, D. E. A. : Interference Effects Produced by a Cold Jet

Issuing Normal to the Airstream from a Flat Plate at Transonic Mach

Numbers. AEDC-TR-67-220. Arnold Air Force Station, Tenn.,

October 1967.

Spring, D. J. ; Street, T. A.; and Amick, J. L. : Transverse Jet

Experiments and Theories--A Survey of the Literature, Part I.

U.S. Army Missile Command, Redstone Arsenal, Report RD-TR-67-4,

June 1967.

Vogler, R. D. : Surface Pressure Distribution Induced on a Flat Plate

by a Cold Air Jet Issuing Perpendicularly from the Plate and Normal to

a Low Speed Free-stream Flow. NASA TN D-1629, March 1963.

219



10.

Ii.

12.

Milne-Thompson, L. M. : Theoretical Hydrodynamics. Third ]Edition,

The MacMillian Co., New York, 1955.

Jordinson, R.: Flow in a Jet Directed Normal to the Wind. Gt. Brit.

Aero. Res. Council RM No. 3074, 1958.

Lamb, Sir H. : Hydrodynamics. Sixth Edition, Dover Publications,

New York, IN.Y.

220



Z _

Y

Uoo

dj 1

X'_

M71745
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THE USE OF MATCHED ASYMPTOTIC EXPANSIONS AS AN APPROACH

TO THE PROBLEM OF THE JET IN A CROSSFLOW

By Jack E. Werner

New York University

SUMMARY

The method of matched asymptotic expansions is proposed as an ap-

proach to the problem of a circular jet issuing from a plane surface

into a crossflow. "Inner" and "outer" expansions are written in powers

of the parameter ro/R. Introduction of these expansions into Laplace's

eq. for the velocity potential results in a series of quasi two-di-

mensional equations for the terms of the inner expansion. The matching

principle is illustrated and the manner in which different models of

the flow may be introduced into the theory and compared is discussed.

SYMBOLS

r
o

R

characteristic "diameter" of jet cross section

radius of curvature of jet trajectory

undisturbed upstream flow velocity

xl coordinate in downstream direction

Yl

z I

coordinate perpendicular to x I and jet axis

coordinate perpendicular to plane of jet orifice

o

i

velocity potential

outer expansion for velocity potential

inner expansion for velocity potential

complex variable x + iy

complex variable X + iY

real part of f(_)
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INTRODUCTION

One of the important objectives of an analytical treatment of the

jet in a crossflow is the determination of the induced flow particularly

near the aerodynamic surfaces of jet VTOL craft. Unfortunately the

phenomenon is too complex to admit of a complete theoretical treatment.

The effects of viscosity and turbulence in the jet present formidable

enough obstacles but to this must be added the difficulties of solving

the free-boundary problem of the three-dimensional flow around the jet

to arrive at the induced flow field. Among the initial efforts in this

field were investigations of the jet itself and its trajectory, refs.

[I] to [4]. More recently the results of these investigations have

been used to infer the shape of the trajectory at the outset and thus

reduce the induced flow problem to a fixed rather than free-boundary

problem. Such a treatment has been carried out by WooleL ref. [5] and

by Rubbert and Saaris, ref. [6], to evaluate the flow field near lifting
surfaces.

Presently the state of development is such that we must accept

admittedly crude models of the physical situation in order to make

analytical headway. This being the case it is still worthwhile to

propose and compare different analytical models in an effort to arrive

at one or a combination of useful ones. It is the purpose of this

paper to propose a theoretical framework in which various analytical

models may be explored and compared. Basically the method centers

about the use of matched asymptotic expansions, Van Dyke ref. [7].

FORMULATION OF THE PROBLEM

We consider the problem of a jet issuing into a crossflow from an

orifice in a flat plate. Outside the jet we seek solutions to the

inviscid flow governed by the Laplace eq. for the potential. Far from

the jet, in the so-called "outer" region, we expect the flow to be un-

disturbed away from the wake. On the jet itself the flow is to be

tangential to the jet surface and for small values of the parameter

ro/R we may expect this flow to be almost two dimensional but not com-

pletely so.

To accomodate these last considerations the "inner" and "outer"

expansions of the potential are introduced in the form:

CO

IR) TMo oQO (x,y,z) = _0m (x,y,z)

o

OO

m

Q0 (X,Y,Z)= Q0m (X,Y,Z)

o
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where x, y, z are nondimensional outer variables

x = xl/R , y = Yl/R , z = zl/R

and X, Y, Z are the dimensionless inner variables

x _ Z =z
X = ro/R , Y = ro/R ,

o
is a solution to the Laplace eq. satisfying the boundary conditions

far from the jet. _i is a solution to the Laplace eq. satisfying

boundary conditions on the jet surface. Each of these solutions requires

another condition to determine them uniquely. The remaining condition is

the requirement that the two expansions match asymptotically over a

region intermediate to the inner and outer regions. By this we mean that

over the matching region the Nth partial sums of _o and _i exhibit the

same functional behavior and agree within an order of (ro/R)N . Thus the

condition supplying the intermediate boundary condition is for each value

of N

lim

(ro/R)_0 (ro/R) N

N r m N m

o o =0

Where [ ]o represents the behavior of the inner solution near the

outer bound of the matching region, i.e., as X,Y _ _ with x,y finite this

limiting process is equivalent to letting ro/R approach zero with x,y

finite. Similarly [ ]i represents the behavior of the outer solution

near the inner bound of the matching region and is found by allowing ro/R

to approach zero with X,Y finite, i.e., letting x,y tend to zero.

o i

EVALUATION OF _0m , _0m

o i

The governing eqs. for the functions _m and _m are obtained by

substitution of the expansions into the Laplace eq. and setting the coef-

ficient of powers of (ro/R) equal to zero. Thus the complete eqs.

governing _o and _i are

@o @o @o
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Substituting the inner expansion into the second of these yields

• °

7f- + _-V- = 0

_e i
1

_--_-+ _-V- = 0

+_-V - _z_ m> 2

The terms of the outer solution all obey

o _ o o

_m _ _m _ _m
_-7- + _-7- + _z-7-= o me 0

o

Thus M is a solution of the Laplace eq. satisfying the outer boundaryO

condition of uniform flow at infinity. A solution for to° will therefore
be

o

_0° = Ux

From the matching condition with N = 0

rq0z
l im {L o] o - [Qg°]i) = 0

(ro/R)_0

r n-]

Where |c0_| ; lim [Ux]=
U u_J

i (ro/R)-_0

X finite

r

 ox]lim U_-- = 0

(ro/R)-_O

X finite

J i[ i- = 0 which together with the governing eq. for MoTherefore we have [Moo

and the inner boundary condition yields

i

_0° = 0

This result, although very simple, serves to illustrate the rudiments of

the matching technique. Turning to the next order M# satisfies the two
dimensional Laplace eq. together with the condition that its derivative

normal to the jet surface is zero to within terms of order (ro/R). A
general solution satisfying these conditions will be assumed in the form
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i nc
1

This form assumes a general two-dimensional symmetrical flow about a

closed streamline enclosing the origin _ = 0. The closed streamline

may be completely on the jet surface, i.e. : fully attached flow, or may

follow the upstream portion of the jet surface but then separate from

it to enclose a wake region and then close at some point downstream.

It is at this point that we may introduce any one of a number of possi-

ble models for the flow around the jet.

Applying the matching condition with N = 0 we arrive at the con-
ditions

IC= U

nc=o ne 2

[o]=0
_°I i

o
Thus we shall have _i = 0 and

o0

<0i

o

i
in which the constants Cn are determined by the requirement that _I

represent the potential for a uniform flow about the closed streamline

(tangential to jet and wake surfaces) at the station z. In other words,

the third dimension z enters by means of the coefficients Cn determined
by the boundary condition at the station z.

Continuing the process to N = 2 yields the result

O_

_0ei = R_ I Dn/_n_

1
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The interpretation placed on the latter result is that to within the

order of (to/R) e the outer solution consists of a uniform flow plus a
distribution of doublets along the jet axis. The origin of the doublet

flow is found in the "blockage" of the jet and the presence of sheets

of vorticity occurring symmetrically over the jet and wake surfaces.

Since the strength of these vortex sheets are determined by the jet

cross section at a given station z along the jet axis, the vorticity

will vary with z. To maintain the balance of vorticity according to the

laws of Helmholtz we must have a trailing vortex system breaking away

symmetrically from the sides of the jet and wake surfaces. Far from the

jet these trailing vortices appear as a distribution of vortex doublets

inducing a downwash behind the jet.

CONCLUDING REMARKS

The above considerations represent a rough sketch of the more

important features of the proposed method as they are discernible at

this stage. Principal among these is the quasi two-dimensional nature
of the enuations for _i _nI and at least the homogeneous parts of the

• _1 ' _2
subsequent terms _. This makes available to us the growlng body of
knowledge regarding two-dimensional wake flows. The method also con-

tains a built-in system of "accounting" in the matter of obtaining

solutions which are valid to within a given order of magnitude. Thus,

in obtaining say the first two terms of _l it is only necessary to

satisfy an approximate boundary condition to within an order of (ro/R) e

rather than inconsistently posing an exact boundary condition for an

approximate formulation of the solution.
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MASS ENTRAINMENT OF A CIRCULAR JET IN A CROSS FLOW

By R. L. Fearn

University of Florida

Gainesville, Florida

SUMMARY

By use of conservation of mass and momentum, an equation is derived

relating the mass entrainment of a round turbulent jet exhausting into a cross

flow to the equation for the jet axis. If an empirical equation for the jet

axis is used, one finds that the mass entrainment approximates a linear depend-

ence on distance along the jet axis. If, on the other hand, a linear entrain-

ment of undetermined slope is assumed, a differential equation is obtained for

the jet axis which can be solved analytically. Several members of the resulting

family of one-parameter curves are fitted to empirically determined jet axes to

obtain the entrainment as a function of the ratio of free-stream _r_1_+_r,_v_Jto jet

velocity.

INTRODUCTION

An approximate technique to determine numerically the aerodynamic charac-

teristics of a wing in subsonic flow is to use lifting-surface theory. This

method is a generalization of Prandtl's lifting-line theory in which the wing

is represented by a superposition of singular solutions to Laplace's equation.

Boundary conditions that the flow be tangent to the surface of the wing and that

the Kutta condition be satisfied are imposed at appropriate points. This method

has also been used in an attempt to calculate the aerodynamic characteristics of

the fan-in-wing configuration which is one design approach to VTOL aircraft

(ref. 1). The slipstream from the wing fan constitutes a round turbulent jet

exhausting into a cross flow. Since this is a boundary-layer phenomenon, one

would expect the singularity method to be applicable in the region exterior to

the wing and jet. However_ knowledge of the jet in a cross flow is required to

establish the boundary conditions for the potential flow problem. The lack of

such knowledge is illustrated by the work of Rubbert and associates who found

that the only usable information available to them about the jet in a cross flow

was an empirical equation for the jet axis. In the absence of any other informa-

tion, they used a constant-cross-section jet with no entrainment. (See ref. 1.)

Despite this lack of information, considerable effort has been expended to

describe this phenomenon both experimentally and theoretically. Experimental

studies have established the location of the jet center line for various condi-

tions at the jet orifice and have provided some information about velocity and

pressure distributions. (See refs. 2 and 3.) Because of the complexity of the

theoretical problem, however, little more has been attempted than to describe

the location of the jet center line. One theoretical approach has been to
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assume that the interaction of the jet with the free stream could be represented

by an appropriate drag coefficient for the jet (refs. 4 to 6) which presupposes

that a pressure distribution is a mechanism for jet deflection. This is possibly

significant in the vicinity of the jet orifice, but it is probably negligible

compared with the momentum mixing of the jet with the free stream for distances

along the jet axis greater than a few jet diameters.

SYMBOLS

a

CI

E

e S

i,k

M

,_I E

m

Q

%

S

Vj

x,z;

Xo,Zo_

X'

parameter, Mz/mV_, feet

constant, a _l + (xo')2 _ Xo ' dimensionless

1 ao

entrainment coefficient, Q-_s' dimensionless

unit vector tangent to jet axis

Cartesian unit vectors

momentum flux across Jet cross section, slug-feet/second 2

component of jet momentum flux perpendicular to free-streamvelocity,

slug-feet/second 2

momentum flux entrained across increment of jet boundary,

slug-feet/second2

slope of curve of mass entrainment as a function of distance along

jet axis, constant, slugs/foot-second

mass flux across jet cross section, slugs/second

mass flow across jet orifice

mass flux entrained across increment of jet boundary, slugs/second

distance along jet axis, measured in jet diameters, dimensionless

initial jet velocity, feet/second

free-streamvelocity, feet/second

Cartesian coordinates of jet axis, measured in jet diameters,

dimensionless

derivative of x with respect to z, dimensionless
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z',z" first and second derivatives of z with respect to x 3 dimensionless

angle between jet axis and free-streamvelocity, degrees

Arrow over symbol indicates vector.

MASS ENTRAINMENT AND THE EQUATION FOR THE JET AXIS

The purpose of this paper is to investigate the possibility of obtaining

some information about the jet axis and entrainment of a circular turbulent jet

exhausting into a cross flow by considering conservation of mass and momentum.

Simply stated, the approach is to assume that the mechanism for deflecting the

jet is an inelastic collision of the entrained mass with the mass of the jet, 1

that is, the pressure field as a mechanism for deflecting the jet is neglected.

Additionally_ the mass entrained by the jet is assumed to have a velocity

approximately equal to the free-stream velocity V_.

To formulate this assumption quantitatively, consider the conservation of

mass and momentum for a small control volume defined by two cross sections of

the jet, located at s and s +As from the jet orifice along the jet center

line, and by the jet boundary. The conservation equations for the control

volume may be written as

Q(s+As)= Q(s)+ n%(s) (i)

(2)

where Q(s) and M(s) are the mass and momentum flux across the jet cross sec-

tion at s, and 2_E(S ) and 2_E(S ) are the mass and momentum flux entrained

across the Jet boundary between the cross section at s and s + As. Assume

that the momentum entrained across the jet boundary is the entrained mass with a

velocity equal to the free-stream velocity V_, that is,

Z (s) = v (3)

The change in the momentum of the jet with respect to distance along the jet
axis may thus be written

dM dQ
d'7= (4)

1This approach was first brought to the author's attention by Dr. Gerhard

Braun in December 1967.
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If dM/ds is related to the equation for the jet axis, then equation (4)

can be used to obtain a relation between mass entrainment and the equation for

the jet axis. Define the jet axis as the curve passing through the center of

the jet orifice with the direction at every point on the curve tangent to the

momentum flux at that point. If the momentum flux is written as

_(s) = M(s)_s

and the unit vector _s is written in terms of the Cartesian unit vectors, then

z"M z __ ^ dM z-i+--k

,2(_ + z,2) _I_

where _ and k are the unit vectors parallel and normal to the free stream,

respectively, z(x) defines the equation for the jet axis, and M z is the com-

ponent of the jet momentum flux perpendicular to the free-stream velocity.

Equating equations (4) and (5) gives the desired relation

z"M z
d__QV_ : - (61

+

where M z is constant.

Using an empirical equation for the jet axis to calculate the mass entrain-

ment as a function of s, one finds that the dependence is approximately linear

except in the vicinity of the jet orifice (fig. i).

A SEMIEMPIRICAL EQUATION FOR THE JET AXIS

If the mass entrainment is assumed to vary linearly with distance along the

jet axis in the region of established flow_ that is,

dQ/ds = m

where m is a constant_ then the jet axis is described by the differential
equation

z"M z
mV = (7)

" z,2(1 + z,2)I/2
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Letting a = Mz/(mV_)

equation for the jet axis

"I
+ -a +x+C I

z:zo+, LE<xo+ - a +x o +Cl_

and integrating equation (7) results in a semiempirical

(8)

, ,.271/2where CI = a + [xo J ] - - xo and the parameter a must be determ__ined

experimentally. The position (Xo,Zo) and the slope xo' of the jet axis at one

point in the region of established flow must be specified as initial conditions.

For a jet exhausting normally into a cross flow,

Mz = QoVj

where Qo is the mass flux across the jet orifice. One may define an entrain-

ment coefficient as

E= i dQ

Qo ds

which in terms of the parameter a is

vj
E = --

aV_

The parameter a, or equivalently E, may be varied to obtain a best fit to

experimentally determined jet axes for various velocity ratios elV/Vj"

The entrainment coefficient for a number of velocity ratios was obtained

by fitting equation (8) to the following empirical equation for the jet axis

developed by Ivanov (ref. 4, p. 544):

ivan2.6
X = t_ I Z3 + Z cot _ (9)

where _ is the initial angle that the jet axis makes with the free-stream

velocity. Margason confirms that this equation provides a good fit to experi-

mental results (ref. 7). It was found that a good fit between the semiempirical

equation (8) and the empirical equation (9) could be obtained by assuming that

the jet does not deflect from the Z-axis until it reaches a particular distance

from the jet orifice. The point at which deflection begins is referred to as

the effective source of the jet, and the distance from the jet orifice to the

effective source varies with velocity ratio. This probably marks the point
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where the potential core has disappeared and where the region of established

flow begins. Under these assumptions_ the semiempirical equation simplifies to

z = z° +'l---in Ii+ERIXER
(i0)

_ I

where zo locates the effective source_ and R is the velocity ratio V/Vj.

The entrainment coefficient E as a function of velocity ratio V /Vj is

shown in figure 2. This entrainment coefficient is relatively insensitive to

the matching point, that is, to whether equation (i0) or equation (8) is used.

The entrainment for the submerged jet (ref. 8) has been included for comparison.

The location of the effective source Zo, which is obtained in addition to the

entrainment coefficient when equation (i0) is fitted to the empirical curve, is

shown for several velocity ratios in figure 3. An example of the fit between

the semiempirical and empirical equations for the jet axis is presented in

figure 4.

From consideration of the integral equations for the conservation of mass

and momentum, it becomes apparent that equation (4) is an oversimplification. By

assuming that the velocity on the jet boundary does not differ appreciably from

the free-stream velocity_ it can be shown that the entrainment presented in fig-

ure 2 may be too large by as much as a factor of 2.

CONCLUDING REMARKS

It has been shown that the observed jet axis can be accounted for by con-

sidering momentum mixing to be the only mechanism for jet deflection. Recourse

has not been made to a drag coefficient which in the region of established flow

has the disturbing connotation of flow over a solid body. The values predicted

for the mass entrainment necessary to account for the observed jet deflection

are physically reasonable and should be considered as upper limits.
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